Skip to main content
Log in

Silica-Based Advanced Nanoparticles For Treating Ischemic Disease

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Recently, various attempts have been made to apply diverse types of nanoparticles in biotechnology. Silica nanoparticles (SNPs) have been highlighted and studied for their selective accumulation in diseased parts, strong physical and chemical stability, and low cytotoxicity. SNPs, in particular, are very suitable for use in drug delivery and bioimaging, and have been sought as a treatment for ischemic diseases. In addition, mesoporous silica nanoparticles have been confirmed to efficiently deliver various types of drugs owing to their porous structure. Moreover, there have been innovative attempts to treat ischemic diseases using SNPs, which utilize the effects of Si ions on cells to improve cell viability, migration enhancement, and phenotype modulation. Recently, external stimulus-responsive treatments that control the movement of magnetic SNPs using external magnetic fields have been studied. This review addresses several original attempts to treat ischemic diseases using SNPs, including particle synthesis methods, and presents perspectives on future research directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.

    Article  CAS  PubMed  Google Scholar 

  2. Khalid K, Tan X, Mohd Zaid HF, Tao Y, Lye Chew C, Chu DT, et al. Advanced in developmental organic and inorganic nanomaterial: a review. Bioengineered. 2020;11:328–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sur S, Rathore A, Dave V, Reddy KR, Chouhan RS, Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures & Nano-Objects. 2019;20:100397.

    Article  CAS  Google Scholar 

  4. Desai N, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv. 2021;18:1261–90.

    Article  Google Scholar 

  5. Bhattacharjee S, Rietjens IMCM, Singh MP, Atkins TM, Purkait TK, Zejing Xu, dSR, et al. Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale. 2013;5:4870–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Myndrul V, Iatsunskyi I. Nanosilicon-based composites for (bio)sensing applications: current status. Advant, Perspect, Mater. 2019;12:2880.

    CAS  Google Scholar 

  7. Zhao Y, Xu Z, Wang X, Lin T. Photoreactive azido-containing silica nanoparticle/polycation multilayers: durable superhydrophobic coating on cotton fabrics. Langmuir. 2012;28:6328–35.

    Article  CAS  PubMed  Google Scholar 

  8. Ruizendaal L, Bhattacharjee S, Pournazari K, Rosso-vasic M, de Haan LHJ, Alik GM, et al. Synthesis and cytotoxicity of silicon nanoparticles with covalently attached organic monolayers. Nanotoxicology. 2009;3:339–47.

    Article  CAS  Google Scholar 

  9. Fowler CE, Khushalani D, Lebeau B, Mann S. Nanoscale materials with mesostructured interiors. Adv Mater. 2001;13:649–52.

    Article  CAS  Google Scholar 

  10. Cai Q, Luo ZS, Pang WQ, Fan YW, Chen XH, Cui FZ. Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater. 2001;13:258–63.

    Article  CAS  Google Scholar 

  11. Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE. Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater. 2002;14:4721–8.

    Article  CAS  Google Scholar 

  12. Li C, Ma C, Wang F, Xi Z, Wang Z, Deng Y, et al. Preparation and biomedical applications of core-shell silica/magnetic nanoparticle composites. J Nanosci Nanotechnol. 2012;12:2964–72.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP. Silica-coated magnetic nanoparticles labeled endothelial progenitor cells alleviate ischemic myocardial injury and improve long-term cardiac function with magnetic field guidance in rats with myocardial infarction. J Cell Physiol. 2019;234:18544–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu M, Li X, Guo Q, Li J, Xu G, Li G, et al. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques. Nanomedicine. 2021;32:102330.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Li N, Pan W, Yu Z, Yang L, Tang B. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces. 2016;9:2123–9.

    Article  Google Scholar 

  16. Liu S, Chen X, Bao L, Liu T, Yuan P, Yang X, et al. Treatment of infarcted heart tissue via the capture and local delivery of circulating exosomes through antibody-conjugated magnetic nanoparticles. Nat Biomed Eng. 2020;4:1063–75.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Gu H. Core–shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater. 2015;27:576–85.

    Article  CAS  PubMed  Google Scholar 

  18. Bagheria E, Ansaric L, Abnousa K, Taghdisib SM, Charbgoob F, Ramezania M, et al. Silica based hybrid materials for drug delivery and bioimaging. J Control Release. 2018;277:57–76.

    Article  Google Scholar 

  19. Xing M, Wang X, Wang E, Gao L, Chang JJAb. Bone tissue engineering strategy based on the synergistic effects of silicon and strontium ions. Acta Biomater. 2018;72:381–95.

    Article  CAS  PubMed  Google Scholar 

  20. Dashnyam K, Jin GZ, Kim JH, Perez R, Jang JH, Kim HW. Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials. 2017;116:145–57.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X, et al. Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces. 2019;11:1449–68.

    Article  CAS  PubMed  Google Scholar 

  22. Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rahman IA, Padavettan V. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. J Nanomater. 2012;2012:132424.

    Article  Google Scholar 

  24. Lee JA, Kim MK, Paek HJ, Kim YR, Kim MK, Lee JK, et al. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int J Nanomedicine. 2014;9:251.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Galagudza MM, Korolev DV, sonin DL, Postnov VN, Papayan GV, Uskov Is, et al. Targeted drug delivery into reversibly injured myocardium with silica nanoparticles: surface functionalization, natural biodistribution, and acute toxicity. Int J Nanomedicine. 2010;5:231–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Galagudza M, Korolev D, Postnov V, Naumisheva E, Grigorova Y, Uskov I, et al. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int J Nanomedicine. 2012;7:1671–8.

    Article  CAS  Google Scholar 

  27. Galagudza MM, Korolev DV, Sonin DL, Alexandrov IV, Minasian SM, Postnov VN, et al. Passive and active target delivery of drugs to ischemic myocardium. Bull Exp Biol Med. 2011;152:105–7.

    Article  CAS  PubMed  Google Scholar 

  28. Kim J, Cao L, Shvartsman D, Silva EA, Mooney DJ. Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis. Nano Lett. 2011;11:694–700.

    Article  CAS  PubMed  Google Scholar 

  29. Wang W, Sun X, Zhang H, Yang C, Liu Y, Yang W, et al. Controlled release hydrogen sulfide delivery system based on mesoporous silica nanoparticles protects graft endothelium from ischemia-reperfusion injury. Int J Nanomedicine. 2016;11:3255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de la Torre C, Mondragon L, Coll C, Garcia-Fernandez A, Sancenon F, Martinez-Manez R, et al. Caspase 3 targeted cargo delivery in apoptotic cells using capped mesoporous silica nanoparticles. Chemistry. 2015;21:15506–10.

    Article  PubMed  Google Scholar 

  31. Yao C, Wu W, Tang H, Jia X, Tang J, Ruan X, et al. Self-assembly of stem cell membrane-camouflaged nanocomplex for microRNA-mediated repair of myocardial infarction injury. Biomaterials. 2020;257:120256.

    Article  CAS  PubMed  Google Scholar 

  32. Cha BG, Jeong HG, Kang DW, Nam MJ, Kim CK, Kim DY, et al. Customized lipid-coated magnetic mesoporous silica nanoparticle doped with ceria nanoparticles for theragnosis of intracerebral hemorrhage. Nano Res. 2018;11:3582–92.

    Article  CAS  Google Scholar 

  33. Zou Z, Wen S, Li Y, An J, Wu Q, Tong L, et al. Novel lactoferrin-functionalized manganese-doped silica hollow mesoporous nanoparticles loaded with resveratrol for the treatment of ischemic stroke. Mater Today Adv. 2022;15:100262.

    Article  CAS  Google Scholar 

  34. Balasubramanian V, Domanskyi A, Renko JM, Sarparanta M, Wang CF, Correia A, et al. Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials. 2020;227:119556.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou G, Zhao W, Zhang C, Gao X, Cheng Q, Gao F. Manganese carbonyl-loaded hollow mesoporous silica nanoparticles coated with neutrophil membranes for acute kidney injury therapy. ACS Appl Nano Mater. 2022;5:4130–45.

    Article  CAS  Google Scholar 

  36. Tadayon A, Jamshidi R, Esmaeili A. Delivery of tissue plasminogen activator and streptokinase magnetic nanoparticles to target vascular diseases. Int J Pharm. 2015;495:28–438.

    Article  Google Scholar 

  37. Wang Y, Xu F, Zhang C, Lei D, Tang Y, Xu H, et al. High MR sensitive fluorescent magnetite nanocluster for stem cell tracking in ischemic mouse brain, Nanomedicine: Nanotechnology. Biol Med. 2011;7:1009–19.

    CAS  Google Scholar 

  38. Zhang L, Wang Y, Tang Y, Jiao Z, Xie C, Zhang H, et al. High MRI performance fluorescent mesoporous silica-coated magnetic nanoparticles for tracking neural progenitor cells in an ischemic mouse model. Nanoscale. 2013;5:4506–16.

    Article  CAS  PubMed  Google Scholar 

  39. Kwon SP, Jeon S, Lee SH, Yoon HY, Ryu JH, Choi D, et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/computed tomography thrombus imaging. Biomaterials. 2018;150:125–36.

    Article  CAS  PubMed  Google Scholar 

  40. Chen F, Zhao ER, Hableel G, Hu T, Kim T, Li J, et al. Increasing the Efficacy of Stem Cell Therapy via Triple-Function Inorganic Nanoparticles. ACS Nano. 2019;13:6605–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farr TD, Lai CH, Grünstein D, Orts-Gil G, Wang CC, Boehm-Sturm P, et al. Imaging early endothelial inflammation following stroke by core shell silica superparamagnetic glyconanoparticles that target selectin. Nano Lett. 2014;14:2130–4.

    Article  CAS  PubMed  Google Scholar 

  42. Chen PJ, Kang YD, Lin CH, Chen SY, Hsieh CH, Chen YY, et al. Multitheragnostic multi-gnrs crystal-seeded magnetic nanoseaurchin for enhanced in vivo mesenchymal-stem-cell homing, multimodal imaging, and stroke therapy. Adv Mater. 2015;27:6488–95.

    Article  CAS  PubMed  Google Scholar 

  43. Yao M, Shi X, Zuo C, Ma M, Zhang L, Zhang H, et al. Engineering of SPECT/photoacoustic imaging/antioxidative stress triple-function nanoprobe for advanced mesenchymal stem cell therapy of cerebral ischemia. ACS Appl Mater Interfaces. 2020;12:37885–95.

    Article  CAS  PubMed  Google Scholar 

  44. Kermani F, Gharavian A, Mollazadeh S, Kargozar S, Youssefi A, Vahdati KJ. Silicon-doped calcium phosphates; the critical effect of synthesis routes on the biological performance. Mater Sci Eng C Mater Biol Appl. 2020;111:110828.

    Article  CAS  PubMed  Google Scholar 

  45. Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem. 2009;17:2950–62.

    Article  CAS  PubMed  Google Scholar 

  46. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019:3702518.

    Article  Google Scholar 

  47. Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery. Adv Funct Mater. 2019;30:1902634.

    Article  Google Scholar 

  48. HB N, Bakliwal S, Pawar S. In-situ gel: new trends in controlled and sustained drug delivery system. Int J Pharmtech Res. 2010;2:1398–408.

    Google Scholar 

  49. Heng PWS. Controlled release drug delivery systems. Pharm Dev Technol. 2018;23:833.

    Article  CAS  PubMed  Google Scholar 

  50. Ahmed L, Atif R, Eldeen TS, Yahya I, Omara A, Eltayeb M, et al. Study the using of nanoparticles as drug delivery system based on mathematical models for controlled release. IJLTEMAS. 2019;8:52–6.

    Google Scholar 

  51. Liu Y, Lou C, Yang H, Shi M, Miyoshi H. Silica nanoparticles as promising drug/gene delivery carriers and fluorescent nano-probes: recent advances. Curr Cancer Drug Targets. 2011;11:156–63.

    Article  CAS  PubMed  Google Scholar 

  52. Abeer MM, Rewatkar P, Qu Z, Talekar M, Kleitz F, Schmid R, Popat A. Silica nanoparticles: a promising platform for enhanced oral delivery of macromolecules. J Control Release. 2020;326:544–55.

    Article  CAS  PubMed  Google Scholar 

  53. M Ways TM, Ng KW, Lau WM, Khutoryanskiy VV. Silica nanoparticles in transmucosal drug delivery. Pharmaceutics. 2020;12:751.

    Article  CAS  Google Scholar 

  54. Matoba T, Egashira K. Nanoparticle-mediated drug delivery system for cardiovascular disease. Int Heart J. 2014;55:281–6.

    Article  CAS  PubMed  Google Scholar 

  55. Matoba T, Koga JI, Nakano K, Egashira K, Tsutsui H. Nanoparticle-mediated drug delivery system for atherosclerotic cardiovascular disease. J Cardiol. 2017;70:206–11.

    Article  PubMed  Google Scholar 

  56. Galagudza M, Korolev D, Postnov V, Naumisheva E, Grigorova Y, Uskov I, et al. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles. Int J Nanomedicine. 2012;7:1671–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine. 2015;11:313–27.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8:165–77.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yu XH, Cui LB, Wu K, Zheng XL, Cayabyab FS, Chen ZW, et al. Hydrogen sulfide as a potent cardiovascular protective agent. Clin Chim Acta. 2014;437:78–87.

    Article  CAS  PubMed  Google Scholar 

  60. Luo D, Saltzman WMJNb. Enhancement of transfection by physical concentration of DNA at the cell surface. Nature Biotechnol. 2000;18:893–5.

    Article  CAS  Google Scholar 

  61. Luo D, Han E, Belcheva N, Saltzman WM. A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Release. 2004;95:333–41.

    Article  CAS  PubMed  Google Scholar 

  62. Chen Y, Chen H, Shi JJAM. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25:3144–76.

    Article  CAS  PubMed  Google Scholar 

  63. Chen W, Glackin CA, Horwitz MA, Zink JI. Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery. Acc Chem Res. 2019;52:1531–42.

    Article  CAS  PubMed  Google Scholar 

  64. Liu CJ, Yao L, Hu YM, Zhao BT. Effect of quercetin-loaded mesoporous silica nanoparticles on myocardial ischemia-reperfusion injury in rats and its mechanism. Int J Nanomedicine. 2021;16:741–52.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Long Y, Yang Q, Xiang Y, Zhang Y, Wan J, Liu S, et al. Nose to brain drug delivery-a promising strategy for active components from herbal medicine for treating cerebral ischemia reperfusion. Pharmacol Res. 2020;159: 104795.

    Article  CAS  PubMed  Google Scholar 

  66. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-brain delivery methods using nanotechnology. Pharmaceutics. 2018;10:269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jampilek J, Zaruba K, Oravec M, Kunes M, Babula P, Ulbrich P, et al. Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier. BioMed Res Int. 2015. https://doi.org/10.1155/2015/812673.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Mendiratta S, Hussein M, Nasser HA, Ali AAA. Multidisciplinary role of mesoporous silica nanoparticles in brain regeneration and cancers: from crossing the blood–brain barrier to treatment. Part Part Syst Charact. 2019;36:1900195.

    Article  CAS  Google Scholar 

  69. Nigro A, Pellegrino M, Greco M, Comandè A, Sisci D, Pasqua L, et al. Dealing with skin and blood-brain barriers: the unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics. 2018;10:250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wolfbeis OS. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev. 2015;44:4743–68.

    Article  CAS  PubMed  Google Scholar 

  71. Cha BG, Kim J. Functional mesoporous silica nanoparticles for bio-imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11:e1515.

    Article  PubMed  Google Scholar 

  72. Pratiwi FW, Kuo CW, Chen BC, Chen P. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine (Lond). 2019;14:1759–69.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang J, Cai L, Tang L, Zhang X, Yang L, Zheng K, et al. Highly dispersed lithium doped mesoporous silica nanospheres regulating adhesion, proliferation, morphology, ALP activity and osteogenesis related gene expressions of BMSCs. Colloids Surf B Biointerfaces. 2018;170:563–71.

    Article  CAS  PubMed  Google Scholar 

  74. Yan L, Li H, Xia W. Bioglass could increase cell membrane fluidity with ion products to develop its bioactivity. Cell Prolif. 2020;53:e12906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Andrée L, Barata D, Sutthavas P, Habibovic P, van Rijt S. Guiding mesenchymal stem cell differentiation using mesoporous silica nanoparticle-based films. Acta Biomater. 2019;96:557–67.

    Article  PubMed  Google Scholar 

  76. Kim KJ, Joe YA, Kim MK, Lee SJ, Ryu YH, Cho DW, et al. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation. Int J Nanomedicine. 2015;10:2261–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen L, Liu J, Zhang Y, Zhang G, Kang Y, Chen A, Shao L. The toxicity of silica nanoparticles to the immune system. Nanomedicine. 2018;13:1939–62.

    Article  PubMed  Google Scholar 

  78. Shi M, Zhou Y, Shao J, Chen Z, Song B, Chang J, et al. Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater. 2015;21:178–89.

    Article  CAS  PubMed  Google Scholar 

  79. Song Y, Li Y, Xu Q, Liu Z. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook. Int J Nanomedicine. 2017;12:87–110.

    Article  CAS  PubMed  Google Scholar 

  80. Nerantzaki M, Michel A, Briot E, Siaugue JM, Ménager C, Wilhelm C, et al. Controlled drug delivery for cancer cell treatment via magnetic doxorubicin imprinted silica nanoparticles. Chem Commun (Camb). 2020;56:10255–8.

    Article  CAS  PubMed  Google Scholar 

  81. Shin D, Lee S, Jang HS, Joo JB, Choi I. Redox/pH-dual responsive functional hollow silica nanoparticles for hyaluronic acid-guided drug delivery. J Ind Eng Chem. 2021;108:72–80.

    Article  Google Scholar 

  82. Giovaninni G, Moore CJ, Hall AJ, Byrne HJ, Gubala V. pH-Dependent silica nanoparticle dissolution and cargo release. Colloids Surf B Biointerfaces. 2018;169:242–8.

    Article  CAS  PubMed  Google Scholar 

  83. Mdlovu NV, Lin KS, Weng MT, Hsieh CC, Lin YS, Espinoza MJC, et al. In vitro intracellular studies of pH and thermo-triggered doxorubicin conjugated magnetic SBA-15 mesoporous nanocarriers for anticancer activity against hepatocellular carcinoma. J Ind Eng Chem. 2021;102:1–16.

    Article  CAS  Google Scholar 

  84. Li Q, Tang G, Xue S, He X, Miao P, Li Y, et al. Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury. Biomaterials. 2013;34:4982–92.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang M, Malik AB, Rehman J. Endothelial progenitor cells and vascular repair. Curr Opin Hematol. 2014;21:224–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) and the Ministry of Science and ICT (NRF-2021M3H4A4079509, NRF- 2019R1C1C1007384, NRF-2020M2D9A3094171, NRF- 2021R1A4A1032782). Additionally, this research was supported by the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korean government (the Ministry of Science and ICT, the Ministry of Health & Welfare, KFRM21A0102L1-11).

Funding

Conceptualization: JH-K and SH-B; investigation: DK, HS-P, JH-K, and SH-B; writing—original draft preparation, DK, HS-P, JH-K, and SH-B; writing—review and editing, JR-L, YK-J, JH-K, and SH-B; visualization, DK, HS-P, JW-P, and GB-I; supervision, JH-K and SH-B; funding acquisition, JH-K and SH-B. All the authors have read and agreed to the published version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suk Ho Bhang or Jae-Hyuk Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dauletkerey Kudailbergen and Hyun Su Park are co-first author and contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudaibergen, D., Park, H.S., Park, J. et al. Silica-Based Advanced Nanoparticles For Treating Ischemic Disease. Tissue Eng Regen Med 20, 177–198 (2023). https://doi.org/10.1007/s13770-022-00510-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00510-z

Keywords

Navigation