Skip to main content
Log in

Comparative Study of Two Common In Vitro Models for the Pancreatic Islet with MIN6

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Islet transplantation is currently considered the most promising method for treating insulin-dependent diabetes. The two most-studied artificial islets are alginate-encapsulated β cells or β cell spheroids. As three-dimensional (3D) models, both artificial islets have better insulin secretory functions and transplantation efficiencies than cells in two-dimensional (2D) monolayer culture. However, the effects of these two methods have not been compared yet. Therefore, in this study, cells from the mouse islet β cell line Min6 were constructed as scaffold-free spheroids or alginate-encapsulated dispersed cells.

Methods:

MIN6 cell spheroids were prepared by using Agarose-base microwell arrays. The insulin secretion level was determined by mouse insulin ELISA kit, and the gene and protein expression status of the MIN6 were performed by Quantitative polymerase chain reaction and immunoblot, respectively.

Results:

Both 3D cultures effectively promoted the proliferation and glucose-stimulated insulin release (GSIS) of MIN6 cells compared to 2D adherent cells. Furthermore, 1% alginate-encapsulated MIN6 cells demonstrated more significant effects than the spheroids. In general, three pancreatic genes were expressed at higher levels in response to the 3D culture than to the 2D culture, and pancreatic/duodenal homeobox-1 (PDX1) expression was higher in the cells encapsulated in 1% alginate than that in the spheroids. A western blot analysis showed that 1% alginate-encapsulated MIN6 cells activated the phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (AKT)/forkhead transcription factor FKHR (FoxO1) pathway more than the spheroids, 0.5% alginate-, or 2% alginate-encapsulated cells did. The 3D MIN6 culture, therefore, showed improved effects compared to the 2D culture, and the 1% alginate-encapsulated MIN6 cells exhibited better effects than the spheroids. The upregulation of PDX1 expression through the activation of the PI3K/AKT/FoxO1 pathway may mediate the improved cell proliferation and GSIS in 1% alginate-encapsulated MIN6 cells.

Conclusion:

This study may contribute to the construction of in vitro culture systems for pancreatic islets to meet clinical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li W, Huang E, Gao S. Type 1 diabetes mellitus and cognitive impairments: a systematic review. J Alzheimers Dis. 2017;57:29–36.

    Article  CAS  Google Scholar 

  2. Zhang W, Wu SZ, Zhou J, Chen HM, Gong YL, Peng FF, et al. Parathyroid hormone-related peptide (1–34) reduces alveolar bone loss in type 1 diabetic rats. Arch Oral Biol. 2017;83:13–9.

    Article  CAS  Google Scholar 

  3. Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016;7:90–110.

    Article  Google Scholar 

  4. Mayer-Davis EJ, Lawrence JM, Dabelea D, Divers J, Isom S, Dolan L, et al. Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med. 2017;376:1419–29.

    Article  Google Scholar 

  5. De Paoli T, Rogers PJ. Disordered eating and insulin restriction in type 1 diabetes: a systematic review and testable model. Eat Disord. 2018;26:343–60.

    Article  Google Scholar 

  6. Beck RW, Riddlesworth TD, Ruedy KJ, Kollman C, Ahmann AJ, Bergenstal RM, et al. Effect of initiating use of an insulin pump in adults with type 1 diabetes using multiple daily insulin injections and continuous glucose monitoring (DIAMOND): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:700–8.

    Article  Google Scholar 

  7. Shapiro AMJ, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 2017;13:268–77.

    Article  CAS  Google Scholar 

  8. Cui SS, Duan LJ, Li JF, Qin YZ, Bao SQ, Jiang X. The factors influencing the renal glucose threshold in patients with newly diagnosed type 2 diabetes mellitus. Diabetes Metab Syndr. 2021;14:4497–503.

    Article  CAS  Google Scholar 

  9. Hering BJ, Clarke WR, Bridges ND, Eggerman TL, Alejandro R, Bellin MD, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes Care. 2016;39:1230–40.

    Article  CAS  Google Scholar 

  10. Orive G, Emerich D, Khademhosseini A, Matsumoto S, Hernández RM, Pedraz JL, et al. Engineering a clinically translatable bioartificial pancreas to treat type I diabetes. Trends Biotechnol. 2018;36:445–56.

    Article  CAS  Google Scholar 

  11. Vériter S, Gianello P, Dufrane D. Bioengineered sites for islet cell transplantation. Curr Diab Rep. 2013;13:745–55.

    Article  Google Scholar 

  12. Speight J, Reaney MD, Woodcock AJ, Smith RM, Shaw JA. Patient-reported outcomes following islet cell or pancreas transplantation (alone or after kidney) in type 1 diabetes: a systematic review. Diabetic Med. 2010;27:812–22.

    Article  CAS  Google Scholar 

  13. Gamble A, Pepper AR, Bruni A, Shapiro AMJ. The journey of islet cell transplantation and future development. Islets. 2018;10:80–94.

    Article  Google Scholar 

  14. Cunha J, Gysemans C, Gillard P, Mathieu C. Stem-cell-based therapies for improving islet transplantation outcomes in type 1 diabetes. Curr Diabetes Rev. 2018;14:3–13.

    Google Scholar 

  15. Menger MM, Nalbach L, Wrublewsky S, Glanemann M, Gu Y, Laschke MW, et al. Darbepoetin-α increases the blood volume flow in transplanted pancreatic islets in mice. Acta Diabetol. 2020;57:1009–18.

    Article  CAS  Google Scholar 

  16. Anazawa T, Okajima H, Masui T, Uemoto S. Current state and future evolution of pancreatic islet transplantation. Ann Gastroenterol Surg. 2019;3:34–42.

    Article  Google Scholar 

  17. Richardson T, Kumta PN, Banerjee I. Alginate encapsulation of human embryonic stem cells to enhance directed differentiation to pancreatic islet-like cells. Tissue Eng Part A. 2014;20:3198–211.

    Article  CAS  Google Scholar 

  18. Lehmann R, Zuellig RA, Kugelmeier P, Baenninger PB, Moritz W, Perren A, et al. Superiority of small islets in human islet transplantation. Diabetes. 2007;56:594–603.

    Article  CAS  Google Scholar 

  19. Giuliani M, Moritz W, Bodmer E, Dindo D, Kugelmeier P, Lehmann R, et al. Central necrosis in isolated hypoxic human pancreatic islets: evidence for postisolation ischemia. Cell Transplant. 2005;14:67–76.

    Article  Google Scholar 

  20. de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials. 2006;27:5603–17.

    Article  Google Scholar 

  21. Hauge-Evans AC, Squires PE, Belin VD, Roderigo-Milne H, Ramracheya RD, Persaud SJ, et al. Role of adenine nucleotides in insulin secretion from MIN6 pseudoislets. Mol Cell Endocrinol. 2002;191:167–76.

    Article  CAS  Google Scholar 

  22. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32:1121–33.

    Article  CAS  Google Scholar 

  23. Tan J, Liu L, Li B, Xie Q, Sun J, Pu H, et al. Pancreatic stem cells differentiate into insulin-secreting cells on fibroblast-modified PLGA membranes. Mater Sci Eng C Mater Biol Appl. 2019;97:593–601.

    Article  CAS  Google Scholar 

  24. Loomans CJM, Williams Giuliani N, Balak J, Ringnalda F, van Gurp L, Huch M, et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Reports. 2018;10:712–24.

    Article  CAS  Google Scholar 

  25. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.

    Article  CAS  Google Scholar 

  26. Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature. 2019;567:43–8.

    Article  CAS  Google Scholar 

  27. Meivar-Levy I, Ferber S. Reprogramming of liver cells into insulin-producing cells. Best Pract Res Clin Endocrinol Metab. 2015;29:873–82.

    Article  CAS  Google Scholar 

  28. Rogers GJ, Hodgkin MN, Squires PE. E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. Cell Physiol Biochem. 2007;20:987–94.

    Article  CAS  Google Scholar 

  29. Yu Y, Gamble A, Pawlick R, Pepper AR, Salama B, Toms D, et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia. 2018;61:2016–29.

    Article  CAS  Google Scholar 

  30. Tanaka H, Tanaka S, Sekine K, Kita S, Okamura A, Takebe T, et al. The generation of pancreatic β-cell spheroids in a simulated microgravity culture system. Biomaterials. 2013;34:5785–91.

    Article  CAS  Google Scholar 

  31. Maltman DJ, Przyborski SA. Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem Soc Trans. 2010;38:1072–5.

    Article  CAS  Google Scholar 

  32. Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat. 2015;227:746–56.

    Article  Google Scholar 

  33. Boland BB, Rhodes CJ, Grimsby JS. The dynamic plasticity of insulin production in β-cells. Mol Metab. 2017;6:958–73.

    Article  CAS  Google Scholar 

  34. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230:16–26.

    Article  CAS  Google Scholar 

  35. Duval K, Grover H, Han LH, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology. 2017;32:266–77.

    Article  CAS  Google Scholar 

  36. Zhang K, Manninen A. 3D cell culture models of epithelial tissues. Method Mol Biol. 2019;1926:77–84.

    Article  CAS  Google Scholar 

  37. Peng W, Unutmaz D, Ozbolat IT. Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends Biotechnol. 2016;34:722–32.

    Article  CAS  Google Scholar 

  38. Namgung B, Ravi K, Vikraman PP, Sengupta S, Jang HL. Engineered cell-laden alginate microparticles for 3D culture. Biochem Soc Trans. 2021;49:761–73.

    Article  CAS  Google Scholar 

  39. Chowdhury A, Dyachok O, Tengholm A, Sandler S, Bergsten P. Functional differences between aggregated and dispersed insulin-producing cells. Diabetologia. 2013;56:1557–68.

    Article  CAS  Google Scholar 

  40. Oberai S, Teo A, Lim M, Ramamoorthi K, Hara J, Asuri PJAJ. Three-dimensional hydrogel encapsulated embryonic stem and carcinoma cells as culture platforms for cytotoxicity studies. AIChE J. 2015;61:3180–4.

    Article  CAS  Google Scholar 

  41. Sugiura S, Cha JM, Yanagawa F, Zorlutuna P, Bae H, Khademhosseini A. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J Tissue Eng Regen Med. 2016;10:690–9.

    Article  CAS  Google Scholar 

  42. Saleh LS, Carles-Carner M, Bryant SJ. The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel. Acta Biomater. 2018;71:37–48.

    Article  CAS  Google Scholar 

  43. Safi SZ, Qvist R, Ong G, Karimian H, Imran M, Shah I. Stimulation of β-adrenergic receptors plays a protective role via increased expression of RAF-1 and PDX-1 in hyperglycemic rat pancreatic islet (RIN-m5F) cells. Arch Med Sci. 2017;13:470–80.

    Article  CAS  Google Scholar 

  44. Spaeth JM, Walker EM, Stein R. Impact of Pdx1-associated chromatin modifiers on islet β-cells. Diabetes Obes Metab. 2016;18:123–7.

    Article  CAS  Google Scholar 

  45. Bynigeri RR, Mitnala S, Talukdar R, Singh SS, Duvvuru NR. Pancreatic stellate cell-potentiated insulin secretion from Min6 cells is independent of interleukin 6-mediated pathway. J Cell Biochem. 2020;121:840–55.

    Article  CAS  Google Scholar 

  46. Li Z, Yu P, Wu J, Tao F, Zhou J. Transcriptional regulation of early growth response gene-1 (EGR1) is associated with progression of nonalcoholic fatty liver disease (NAFLD) in patients with insulin resistance. Med Sci Monit. 2019;25:2293–3004.

    Article  Google Scholar 

  47. Huang X, Liu G, Guo J, Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 2018;14:1483–96.

    Article  CAS  Google Scholar 

  48. Li B, Yang J, Lu Z, Liu B, Liu F. A study on the mechanism of rapamycin mediating the sensitivity of pancreatic cancer cells to cisplatin through PI3K/AKT/mTOR signaling pathway. J BUON. 2019;24:739–45.

    Google Scholar 

  49. Li F, Xie W, Fang Y, Xie K, Liu W, Hou L, et al. HnRNP-F promotes the proliferation of bladder cancer cells mediated by PI3K/AKT/FOXO1. J Cancer. 2021;12:281–91.

    Article  CAS  Google Scholar 

  50. Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant huntingtin impairs pancreatic β-cells by recruiting IRS-2 and disturbing the PI3K/AKT/FoxO1 signaling pathway in Huntington’s disease. J Mol Neurosci. 2021;71:2646–58.

    Article  CAS  Google Scholar 

  51. Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer’s disease: a valuable target to stimulate or suppress? Cell Stress Chaperones. 2021;26:871–87.

    Article  CAS  Google Scholar 

  52. Gao Y, Liao G, Xiang C, Yang X, Cheng X, Ou Y. Effects of phycocyanin on INS-1 pancreatic β-cell mediated by PI3K/Akt/FoxO1 signaling pathway. Int J Biol Macromol. 2016;83:185–94.

    Article  CAS  Google Scholar 

  53. Liu TY, Shi CX, Gao R, Sun HJ, Xiong XQ, Ding L, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci (Lond). 2015;129:839–50.

    Article  CAS  Google Scholar 

  54. Yu F, Wei R, Yang J, Liu J, Yang K, Wang H, et al. FoxO1 inhibition promotes differentiation of human embryonic stem cells into insulin producing cells. Exp Cell Res. 2018;362:227–34.

    Article  CAS  Google Scholar 

  55. Calissi G, Lam EW, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov. 2021;20:21–38.

    Article  CAS  Google Scholar 

  56. Xing YQ, Li A, Yang Y, Li XX, Zhang LN, Guo HC. The regulation of FOXO1 and its role in disease progression. Life Sci. 2018;193:124–31.

    Article  CAS  Google Scholar 

  57. Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH 3rd, Wright CV, et al. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002;110:1839–47.

    Article  CAS  Google Scholar 

  58. Tabatabaie PS, Yazdanparast R. Teucrium polium extract reverses symptoms of streptozotocin-induced diabetes in rats via rebalancing the Pdx1 and FoxO1 expressions. Biomed Pharmacother. 2017;93:1033–9.

    Article  CAS  Google Scholar 

  59. Liu X, Yan F, Yao H, Chang M, Qin J, Li Y, et al. Involvement of RhoA/ROCK in insulin secretion of pancreatic β-cells in 3D culture. Cell Tissue Res. 2014;358:359–69.

    Article  CAS  Google Scholar 

  60. Bernard AB, Lin CC, Anseth KS. A microwell cell culture platform for the aggregation of pancreatic β-cells. Tissue Eng Part C Methods. 2012;18:583–92.

    Article  CAS  Google Scholar 

  61. Nyitray CE, Chavez MG, Desai TA. Compliant 3D microenvironment improves β-cell cluster insulin expression through mechanosensing and β-catenin signaling. Tissue Eng Part A. 2014;20:1888–95.

    Article  CAS  Google Scholar 

  62. Khavari A, Nydén M, Weitz DA, Ehrlicher AJ. Composite alginate gels for tunable cellular microenvironment mechanics. Sci Rep. 2016;6:30854.

    Article  CAS  Google Scholar 

  63. Panhwar MH, Czerwinski F, Dabbiru VAS, Komaragiri Y, Fregin B, Biedenweg D, et al. High-throughput cell and spheroid mechanics in virtual fluidic channels. Nat Commun. 2020;11:2190.

    Article  CAS  Google Scholar 

  64. Wassmer CH, Lebreton F, Bellofatto K, Bosco D, Berney T, Berishvili E. Generation of insulin-secreting organoids: a step toward engineering and transplanting the bioartificial pancreas. Transpl Int. 2020;33:1577–88.

    Article  CAS  Google Scholar 

  65. Gattás-Asfura KM, Valdes M, Celik E, Stabler CL. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsules to impart stability and permselectivity. J Mater Chem B. 2014;2:8208–19.

    Article  Google Scholar 

  66. Sakai S, Ono T, Ijima H, Kawakami K. MIN6 cells-enclosing aminopropyl-silicate membrane templated by alginate gels differences in guluronic acid content. Int J Pharm. 2004;270:65–73.

    Article  CAS  Google Scholar 

  67. Simó G, Fernández-Fernández E, Vila-Crespo J, Ruipérez V, Rodríguez-Nogales JM. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym. 2017;170:1–14.

    Article  Google Scholar 

  68. Zhang M, Yan S, Xu X, Yu T, Guo Z, Ma M, et al. Three-dimensional cell-culture platform based on hydrogel with tunable microenvironmental properties to improve insulin-secreting function of MIN6 cells. Biomaterials. 2021;270:120687.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (Grant No.81860327, 81860642), Academic and technical Leaders Program in Jiangxi Province (Grant No.20204BCJL22052). Key Laboratory Program in Jiangxi Province (Grant No.20202BCD42012).

Author information

Authors and Affiliations

Author notes

  1. Xinxin Chao, Furong Zhao, Jiawei Hu. co-first authors.

    Authors

    Contributions

    Study conception and design: XX Chao, FRZ, JWH; Acquisition of data: YRY, RJX, JNZ, MH; Analysis and interpretation of data, critical revision: HY, DL, WJP.

    Corresponding authors

    Correspondence to Hui Yang, Dan Luo or Weijie Peng.

    Ethics declarations

    Conflicts of interest

    The authors declare no conflict of interest.

    Ethical statement

    There are no animal experiments carried out for this article.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Chao, X., Zhao, F., Hu, J. et al. Comparative Study of Two Common In Vitro Models for the Pancreatic Islet with MIN6. Tissue Eng Regen Med 20, 127–141 (2023). https://doi.org/10.1007/s13770-022-00507-8

    Download citation

    • Received:

    • Revised:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s13770-022-00507-8

    Keywords

    Navigation