Skip to main content
Log in

Modeling Human Gonad Development in Organoids

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Our learning about human reproductive development is greatly hampered due to the absence of an adequate model. Animal studies cannot truthfully recapitulate human developmental processes, and studies of human fetal tissues are limited by their availability and ethical restrictions. Innovative three-dimensional (3D) organoid technology utilizing human pluripotent stem cells (hPSCs) offered a new approach to study tissue and organ development in vitro. However, a system for modeling human gonad development has not been established, thus, limiting our ability to study causes of infertility.

METHODS:

In our study we utilized the 3D hPSC organoid culture in mini-spin bioreactors. Relying on intrinsic self-organizing and differentiation capabilities of stem cells, we explored whether organoids could mimic the development of human embryonic and fetal gonad.

RESULTS:

We have developed a simple, bioreactor-based organoid system for modeling early human gonad development. Male hPSC-derived organoids follow the embryonic gonad developmental trajectory and differentiate into multipotent progenitors, which further specialize into testicular supporting and interstitial cells. We demonstrated functional activity of the generated cell types by analyzing the expression of cell type-specific markers. Furthermore, the specification of gonadal progenitors in organoid culture was accompanied by the characteristic architectural tissue organization.

CONCLUSION:

This organoid system opens the opportunity for detailed studies of human gonad and germ cell development that can advance our understanding of sex development disorders. Implementation of human gonad organoid technology could be extended to modeling causes of infertility and regenerative medicine applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satoh M. Histogenesis and organogenesis of the gonad in human embryos. J Anat. 1991;177:85–107.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Santoro N, Caplan A, Strauss J, Winn VD. A letter to president biden and secretary designate of HHS xavier becerra: remove barriers to federal funding of human embryo and fetal tissue research. Reprod Sci. 2021;28:933–5.

    PubMed  Google Scholar 

  3. MacDuffie KE, Hyun I, Krogen MM, Dempsey JC, Murry CE, Copp AJ, et al. Rescuing human fetal tissue research in the United States: a call for additional regulatory reform. Stem Cell Reports. 2021;16:2839–43.

    PubMed  PubMed Central  Google Scholar 

  4. Guo J, Sosa E, Chitiashvili T, Nie X, Rojas EJ, Oliver E, et al. Single-cell analysis of the developing human testis reveals somatic niche cell specification and fetal germline stem cell establishment. Cell Stem Cell. 2021;28:764-78.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Corsini NS, Knoblich JA. Human organoids: new strategies and methods for analyzing human development and disease. Cell. 2022;185:2756–69.

    PubMed  CAS  Google Scholar 

  6. Boitani C, Di Persio S, Esposito V, Vicini E. Spermatogonial cells: mouse, monkey and man comparison. Semin Cell Dev Biol. 2016;59:79–88.

    PubMed  CAS  Google Scholar 

  7. Zhang D, Su M, Tang R, Luo M, Jiang T, Chen R. DSDatlas: disorders of sex development atlas for reproductive endocrinology-related gene discovery in integrative omics platforms. F S Sci. 2022;3:108–17.

    PubMed  Google Scholar 

  8. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96:55–97.

    PubMed  CAS  Google Scholar 

  9. Ho SM, Cheong A, Adgent MA, Veevers J, Suen AA, Tam NNC, et al. Environmental factors, epigenetics, and developmental origin of reproductive disorders. Reprod Toxicol. 2017;68:85–104.

    PubMed  CAS  Google Scholar 

  10. Messerlian C, Williams PL, Ford JB, Chavarro JE, Mínguez-Alarcón L, Dadd R, et al. The environment and reproductive health (EARTH) study: a prospective preconception cohort. Hum Reprod Open. 2018;2018:hoy001. https://doi.org/10.1093/hropen/hoy001.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Scialli AR, Daston G, Chen C, Coder PS, Euling SY, Foreman J, et al. Rethinking developmental toxicity testing: evolution or revolution? Birth Defects Res. 2018;110:840–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Johansson HKL, Svingen T. Hedgehog signal disruption, gonadal dysgenesis and reproductive disorders: Is there a link to endocrine disrupting chemicals? Curr Res Toxicol. 2020;1:116–23.

    PubMed  PubMed Central  Google Scholar 

  13. Sepponen K, Lundin K, Knuus K, Väyrynen P, Raivio T, Tapanainen JS, et al. The role of sequential BMP signaling in directing human embryonic stem cells to bipotential gonadal cells. J Clin Endocrinol Metab. 2017;102:4303–14.

    PubMed  Google Scholar 

  14. Knarston IM, Pachernegg S, Robevska G, Ghobrial I, Er PX, Georges E, et al. An in vitro differentiation protocol for human embryonic bipotential gonad and testis cell development. Stem Cell Reports. 2020;15:1377–91.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Hu YC, Nicholls PK, Soh YQS, Daniele JR, Junker JP, van Oudenaarden A, et al. Licensing of primordial germ cells for gametogenesis depends on genital ridge signaling. PLoS Genet. 2015;11:e1005019.

    PubMed  PubMed Central  Google Scholar 

  16. Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161:1437–52.

    PubMed  CAS  Google Scholar 

  17. Zhou Q, Wang M, Yuan Y, Wang X, Fu R, Wan H, et al. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell. 2016;18:330–40.

    PubMed  CAS  Google Scholar 

  18. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature. 2016;539:299–303.

    PubMed  Google Scholar 

  19. Yoshino T, Suzuki T, Nagamatsu G, Yabukami H, Ikegaya M, Kishima M, et al. Generation of ovarian follicles from mouse pluripotent stem cells. Science. 2021;373:eabe0237.

    PubMed  CAS  Google Scholar 

  20. Mitsunaga S, Odajima J, Yawata S, Shioda K, Owa C, Isselbacher KJ, et al. Relevance of iPSC-derived human PGC-like cells at the surface of embryoid bodies to prechemotaxis migrating PGCs. Proc Natl Acad Sci U S A. 2017;114:E9913–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Handel MA, Eppig JJ, Schimenti JC. Applying “gold standards” to in-vitro-derived germ cells. Cell. 2014;157:1257–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Saitou M, Hayashi K. Mammalian in vitro gametogenesis. Science. 2021;374:eaaz6830.

  23. Pryzhkova MV, Jordan PW. Adaptation of human testicular niche cells for pluripotent stem cell and testis development research. Tissue Eng Regen Med. 2020;17:223–35.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8.

    PubMed  CAS  Google Scholar 

  25. Pryzhkova MV, Xu MJ, Jordan PW. Adaptation of the AID system for stem cell andtransgenic mouse research. Stem Cell Res. 2020;49:102078.

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Pryzhkova MV, Aria I, Cheng Q, Harris GM, Zan X, Gharib M, et al. Carbon nanotube-based substrates for modulation of human pluripotent stem cell fate. Biomaterials. 2014;35:5098–109.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. Elife. 2020;9:e61171.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Rey R, Josso N, Racine C, et al. Sexual differentiation. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.

    Google Scholar 

  29. Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, et al. A genomic atlas of human adrenal and gonad development. Wellcome Open Res. 2017;2:25.

    PubMed  PubMed Central  Google Scholar 

  30. Piprek RP, Kloc M, Kubiak JZ. Early development of the gonads: origin and differentiation of the somatic cells of the genital ridges. Results Probl Cell Differ. 2016;58:1–22.

    PubMed  CAS  Google Scholar 

  31. Davidson AJ. Mouse kidney development. StemBook. Cambridge (MA): Harvard Stem Cell Institute; 2008.

  32. Ariza L, Carmona R, Cañete A, Cano E, Muñoz-Chápuli R. Coelomic epithelium-derived cells in visceral morphogenesis. Dev Dyn. 2016;245:307–22.

    PubMed  Google Scholar 

  33. Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013;27:2409–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Yoshino T, Murai H, Saito D. Hedgehog-BMP signalling establishes dorsoventral patterning in lateral plate mesoderm to trigger gonadogenesis in chicken embryos. Nat Commun. 2016;7:12561.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Romereim SM, Cupp AS. Mesonephric cell migration into the gonads and vascularization are processes crucial for testis development. Results Probl Cell Differ. 2016;58:67–100.

    PubMed  CAS  Google Scholar 

  36. Estermann MA, Williams S, Hirst CE, Roly ZY, Serralbo O, Adhikari D, et al. Insights into gonadal sex differentiation provided by single-cell transcriptomics in the chicken embryo. Cell Rep. 2020;31:107491.

    PubMed  CAS  Google Scholar 

  37. Sasaki K, Oguchi A, Cheng K, Murakawa Y, Okamoto I, Ohta H, et al. The embryonic ontogeny of the gonadal somatic cells in mice and monkeys. Cell Rep. 2021;35:109075.

    PubMed  CAS  Google Scholar 

  38. Liu C, Rodriguez K, Yao HH. Mapping lineage progression of somatic progenitor cells in the mouse fetal testis. Development. 2016;143:3700–10.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Torres M, Gómez-Pardo E, Dressler GR, Gruss P. Pax-2 controls multiple steps of urogenital development. Development. 1995;121:4057–65.

    PubMed  CAS  Google Scholar 

  40. Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, et al. Mechanistic drivers of müllerian duct development and differentiation into the oviduct. Front Cell Dev Biol. 2021;9:605301.

    PubMed  PubMed Central  Google Scholar 

  41. Cunha GR, Robboy SJ, Kurita T, Isaacson D, Shen J, Cao M, et al. Development of the human female reproductive tract. Differentiation. 2018;103:46–65.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Bandiera R, Vidal VPI, Motamedi FJ, Clarkson M, Sahut-Barnola I, von Gise A, et al. WT1 maintains adrenal-gonadal primordium identity and marks a population of AGP-like progenitors within the adrenal gland. Dev Cell. 2013;27:5–18.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ, Dressler GR. Repression of Pax-2 by WT1 during normal kidney development. Development. 1995;121:867–75.

    PubMed  CAS  Google Scholar 

  44. Hu Y-C, Okumura LM, Page DC. Gata4 is required for formation of the genital ridge in mice. PLoS Genet. 2013;9:e1003629.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Smyth IM, Cullen-McEwen LA, Caruana G, Black MJ, Bertram JF. Development of the kidney. In: Fetal and neonatal physiology. Elsevier; 2017. pp. 953–964.e4.

  46. Zarkower D, Murphy MW. DMRT1: an ancient sexual regulator required for human gonadogenesis. Sex Dev. 2021.https://doi.org/10.1159/000518272

  47. Domenice S, Arnhold IJP, Costa EMF, Mendonca BB, et al. 46, XY disorders of sexual development. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000.

    Google Scholar 

  48. Modi D, Shah C, Sachdeva G, Gadkar S, Bhartiya D, Puri C. Ontogeny and cellular localization of SRY transcripts in the human testes and its detection in spermatozoa. Reproduction. 2005;130:603–13.

    PubMed  CAS  Google Scholar 

  49. Mamsen LS, Ernst EH, Borup R, Larsen A, Olesen RH, Ernst E, et al. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads. Sci Rep. 2017;7:15961.

    PubMed  PubMed Central  Google Scholar 

  50. Chen M, Zhang L, Cui X, Lin X, Li Y, Wang Y, et al. Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression. Development. 2017;144:44–53.

    PubMed  CAS  Google Scholar 

  51. Croft B, Ohnesorg T, Hewitt J, Bowles J, Quinn A, Tan J, et al. Human sex reversal is caused by duplication or deletion of core enhancers upstream of SOX9. Nat Commun. 2018;9:5319.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Brennan J, Capel B. One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Genet. 2004;5:509–21.

    PubMed  CAS  Google Scholar 

  53. Coveney D, Cool J, Oliver T, Capel B. Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci U S A. 2008;105:7212–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Combes AN, Wilhelm D, Davidson T, Dejana E, Harley V, Sinclair A, et al. Endothelial cell migration directs testis cord formation. Dev Biol. 2009;326:112–20.

    PubMed  CAS  Google Scholar 

  55. Combes AN, Lesieur E, Harley VR, Sinclair AH, Little MH, Wilhelm D, et al. Three-dimensional visualization of testis cord morphogenesis, a novel tubulogenic mechanism in development. Dev Dyn. 2009;238:1033–41.

    PubMed  PubMed Central  Google Scholar 

  56. de Santa BP, Moniot B, Poulat F, Berta P. Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn. 2000;217:293–8.

    Google Scholar 

  57. Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, et al. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev. 2014;35:747–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Bendsen E, Byskov AG, Laursen SB, Larsen H-PE, Andersen CY, Westergaard LG. Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation. Hum Reprod. 2003;18:13–8.

    PubMed  CAS  Google Scholar 

  59. Ostrer H, Huang HY, Masch RJ, Shapiro E. A cellular study of human testis development. Sex Dev. 2007;1:286–92.

    PubMed  CAS  Google Scholar 

  60. Pendergraft SS, Sadri-Ardekani H, Atala A, Bishop CE. Three-dimensional testicular organoid: a novel tool for the study of human spermatogenesis and gonadotoxicity in vitro. Biol Reprod. 2017;96:720–32.

    PubMed  Google Scholar 

  61. Baert Y, De Kock J, Alves-Lopes JP, Söder O, Stukenborg JB, Goossens E. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Rep. 2017;8:30–8.

    CAS  Google Scholar 

  62. Edmonds ME, Woodruff TK. Testicular organoid formation is a property of immature somatic cells, which self-assemble and exhibit long-term hormone-responsive endocrine function. Biofabrication. 2020;12:045002.

    PubMed  Google Scholar 

  63. Shetty G, Mitchell JM, Lam TNA, Wu Z, Zhang J, Hill L, et al. Donor spermatogenesis in de novo formed seminiferous tubules from transplanted testicular cells in rhesus monkey testis. Hum Reprod. 2018;33:2249–55.

    PubMed  PubMed Central  Google Scholar 

  64. O’Rahilly R. The timing and sequence of events in the development of the human reproductive system during the embryonic period proper. Anat Embryol. 1983;166:247–61.

    Google Scholar 

  65. Makiyan Z. Studies of gonadal sex differentiation. Organogenesis. 2016;12:42–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Xu H-Y, Zhang HX, Xiao Z, Qiao J, Li R. Regulation of anti-Müllerian hormone (AMH) in males and the associations of serum AMH with the disorders of male fertility. Asian J Androl. 2019;21:109–14.

    PubMed  CAS  Google Scholar 

  67. Petersen C, Soder O. The sertoli cell–a hormonal target and “super” nurse for germ cells that determines testicular size. Horm Res. 2006;66:153–61.

    PubMed  CAS  Google Scholar 

  68. Demyashkin GA. Inhibin B in seminiferous tubules of human testes in normal spermatogenesis and in idiopathic infertility. Syst Biol Reprod Med. 2019;65:20–8.

    PubMed  CAS  Google Scholar 

  69. Ross AJ, Tilman C, Yao H, MacLaughlin D, Capel B. AMH induces mesonephric cell migration in XX gonads. Mol Cell Endocrinol. 2003;211:1–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Yao HHC, Aardema J, Holthusen K. Sexually dimorphic regulation of inhibin beta B in establishing gonadal vasculature in mice. Biol Reprod. 2006;74:978–83.

    PubMed  CAS  Google Scholar 

  71. Mamsen LS, Petersen TS, Jeppesen JV, Møllgård K, Grøndahl ML, Larsen A, et al. Proteolytic processing of anti-Müllerian hormone differs between human fetal testes and adult ovaries. Mol Hum Reprod. 2015;21:571–82.

    PubMed  CAS  Google Scholar 

  72. Miller WL, Auchus RJ. The “backdoor pathway” of androgen synthesis in human male sexual development. PLoS Biol. 2019;17:e3000198.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009;30:883–925.

    PubMed  CAS  Google Scholar 

  74. Lin YC, Papadopoulos V. Neurosteroidogenic enzymes: CYP11A1 in the central nervous system. Front Neuroendocrinol. 2021;62:100925.

    PubMed  CAS  Google Scholar 

  75. Connan-Perrot S, Léger T, Lelandais P, Desdoits-Lethimonier C, David A, Fowler PA, et al. Six decades of research on human fetal gonadal steroids. Int J Mol Sci. 2021;22:6681.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Lambrot R, Coffigny H, Pairault C, Donnadieu AC, Frydman R, Habert R, et al. Use of organ culture to study the human fetal testis development: effect of retinoic acid. J Clin Endocrinol Metab. 2006;91:2696–703.

    PubMed  CAS  Google Scholar 

  77. Lewis-Israeli YR, Wasserman AH, Gabalski MA, Volmert BD, Ming Y, Ball KA, et al. Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun. 2021;12:5142.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564–8.

    PubMed  CAS  Google Scholar 

  79. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-Region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165:1238–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Cool J, DeFalco TJ, Capel B. Vascular-mesenchymal cross-talk through Vegf and Pdgf drives organ patterning. Proc Natl Acad Sci U S A. 2011;108:167–72.

    PubMed  CAS  Google Scholar 

  81. Hill EC. On the gross development and vascularization of the testis. Am J Anat. 1906;6:439–59.

    Google Scholar 

  82. Hill EC. The vascularization of the human testis. Am J Anat. 1909;9:463–74.

    Google Scholar 

  83. Hyuga T, Alcantara M, Kajioka D, Haraguchi R, Suzuki K, Miyagawa S, et al. Hedgehog signaling for urogenital organogenesis and prostate cancer: an implication for the epithelial-mesenchyme interaction (EMI). Int J Mol Sci. 2019;21:58.

    PubMed Central  Google Scholar 

  84. Wainwright EN, Svingen T, Ng ET, Wicking C, Koopman P. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol. 2014;395:342–54.

    PubMed  CAS  Google Scholar 

  85. Dudley B, Palumbo C, Nalepka J, Molyneaux K. BMP signaling controls formation of a primordial germ cell niche within the early genital ridges. Dev Biol. 2010;343:84–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Yoshino T. The role of hedgehog-BMP4 signaling in the patterning of coelomic mesoderm and the onset of gonadogenesis. In: Katabuchi H, Ohba T, Motohara T, editors. Cell biology of the ovary. Singapore: Springer Singapore; 2018. p. 21–33.

    Google Scholar 

  87. Pryzhkova MV, Xu MJ, Jordan PW. Adaptation of the AID system for stem cell and transgenic mouse research. Stem Cell Res. 2020;49:102078.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Kobayashi M, Kobayashi M, Odajima J, Shioda K, Hwang YS, Sasaki K, et al. Expanding homogeneous culture of human primordial germ cell-like cells maintaining germline features without serum or feeder layers. Stem Cell Rep. 2022;17:507–21.

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. A. Leung and Dr. V. Busa, as well as Dr. J. Wang and Dr. Honghe Liu for help with qPCR equipment setup and data collection. We would like to thank Dr. B. Zirkin and Dr. J.-Y. Chung for help with ELISA equipment setup and data collection. We thank Dr. I. Rasool from WRTC and Dr. Hooper from JHU Legacy Gift Rapid Autopsy program for coordinating the acquisition of deidentified human testis samples used for this study. Additionally, we would like to acknowledge Dr. M. Matunis for critical discussion of project design. This work was funded by the American Society for Reproductive Medicine to MVP (KY Cha Award in Stem Cell Technology) and National Institute of General Medical Sciences grant to PWJ (R01GM11755).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marina V. Pryzhkova or Philip W. Jordan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical statement

The mouse studies were approved by JHU IACUC (MO21H13). The use of human ESC line was approved by JHU ISCRO committee (protocol ISCRO00000643). Deidentified decedent donor testes tissues were designated as “not human subjects research” by JHU (IRB No: 00006700).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8296 kb)

Supplementary file2 (DOCX 250 kb)

Supplementary file3 (mp4 1588 kb)

Supplementary file4 (mp4 1364 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pryzhkova, M.V., Boers, R. & Jordan, P.W. Modeling Human Gonad Development in Organoids. Tissue Eng Regen Med 19, 1185–1206 (2022). https://doi.org/10.1007/s13770-022-00492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-022-00492-y

Keywords

Navigation