Skip to main content
Log in

Surface-Modifying Effect of Zwitterionic Polyurethane Oligomers Complexed with Metal Ions on Blood Compatibility

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background

To prevent unsolved problems of medical devices, we hypothesized that combinatorial effects of zwitterionic functional group and anti-bacterial metal ions can reduce effectively the thrombosis and bacterial infection of polymeric biomaterials. In this research, we designed a novel series of zwitterionic polyurethane (zPU) additives to impart anti-thrombotic properties to a polyvinyl chloride (PVC) matrix.

Methods

We have synthesized zPUs by combination of various components and zPUs complexed with metal ions. Zwitterion group was prepared by reaction with 1,3-propane sultone and Nmethyldiethanolamine and metal ions were incorporated into sulfobetaine chains via molecular complexation. These zPU additives were characterized using FT-IR, 1H-NMR, elemental analysis, and thermal analysis. The PVC film blended with zPU additives were prepared by utilizing a solvent casting and hot melting process.

Results

Water contact angle demonstrated that the introduction of zwitterion group has improved hydrophilicity of polyurethanes dramatically. Protein adsorption test resulted in improved anti-fouling effects dependent on additive concentration and decreases in their effects by metal complexation. Platelet adhesion test revealed anti-fouling effects by additive blending but not significant as compared to protein resistance results.

Conclusion

With further studies, the synthesized zPUs and zPUs complexed with metal ions are expected to be used as good biomaterials in biomedical fields. Based on our results, we can carefully estimate that the enhanced anti-fouling effect contributed to reduced platelet adhesion.

Graphic Abstract

Schematic explanation of the effect of zwitterionic polyurethane additives for blood-compatible and anti-bacterial bulk modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frost MC, Reynolds MM, Meyerhoff ME. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials. 2005;26:1685–93.

    Article  CAS  PubMed  Google Scholar 

  2. Hasebe T, Shimada A, Suzuki T, Matsuoka Y, Saito T, Yohena S, et al. Fluorinated diamond-like carbon as antithrombogenic coating for blood-contacting devices. J Biomed Mater Res A. 2006;76:86–94.

    Article  PubMed  Google Scholar 

  3. Adipurnama I, Yang MC, Ciach T, Butruk-Raszeja B. Surface modification and endothelialization of polyurethane for vascular tissue engineering applications: a review. Biomater Sci. 2017;5:22–37.

    Article  CAS  Google Scholar 

  4. Lee HJ, Park KD, Park HD, Lee WK, Han DK, Kim SH, et al. Platelet and bacterial repellence on sulfonated poly(ethylene glycol)-acrylate copolymer surfaces. Colloids Surf B Biointerfaces. 2000;18:355–70.

    Article  CAS  PubMed  Google Scholar 

  5. Courtney JM, Lamba NM, Sundaram S, Forbes CD. Biomaterials for blood-contacting applications. Biomaterials. 1994;15:737–44.

    Article  CAS  PubMed  Google Scholar 

  6. Desai NP, Hubbell JA. Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules. 1992;25:226–32.

    Article  CAS  Google Scholar 

  7. Jo SB, Erdenebileg U, Dashnyam K, Jin GZ, Cha JR, El-Fiqi A, et al. Nano-graphene oxide/polyurethane nanofibers: mechanically flexible and myogenic stimulating matrix for skeletal tissue engineering. J Tissue Eng. 2020;11:2041731419900424.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cheng G, Böker A, Zhang M, Krausch G, Müller AH. Amphiphilic cylindrical core− shell brushes via a “grafting from” process using ATRP. Macromolecules. 2001;34:6883–8.

    Article  CAS  Google Scholar 

  9. Flemming RG, Capelli CC, Cooper SL, Proctor RA. Bacterial colonization of functionalized polyurethanes. Biomaterials. 2000;21:273–81.

    Article  CAS  PubMed  Google Scholar 

  10. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, et al. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–64.

    Article  CAS  PubMed  Google Scholar 

  11. Tan J, Brash JL. Nonfouling biomaterials based on polyethylene oxide-containing amphiphilic triblock copolymers as surface modifying additives: Synthesis and characterization of copolymers and surface properties of copolymer–polyurethane blends. J Appl Polym Sci. 2008;108:1617–28.

    Article  CAS  Google Scholar 

  12. Li JT, Carlsson J, Lin JN, Caldwell KD. Chemical modification of surface active poly (ethylene oxide)−poly (propylene oxide) triblock copolymers. Bioconjug Chem. 1996;7:592–9.

    Article  CAS  PubMed  Google Scholar 

  13. Lim CM, Hur J, Jang H, Seo JH. Developing a thermal grafting process for zwitterionic polymers on cross-linked polyethylene with geometry-independent grafting thickness. Acta Biomater. 2019;85:180–91.

    Article  CAS  PubMed  Google Scholar 

  14. Kober M, Wesslén B. Surface properties of a segmented polyurethane containing amphiphilic polymers as additives. J Appl Polym Sci. 1994;54:793–803.

    Article  CAS  Google Scholar 

  15. Dmitrenko M, Penkova A, Kuzminova A, Missyul A, Ermakov S, Roizard D. Development and characterization of new pervaporation PVA membranes for the dehydration using bulk and surface modifications. Polymers (Basel). 2018;10:571.

    Article  Google Scholar 

  16. Kaner P, Rubakh E, Kim DH, Asatekin A. Zwitterion-containing polymer additives for fouling resistant ultrafiltration membranes. J Memb Sci. 2017;533:141–59.

    Article  CAS  Google Scholar 

  17. Sällström N, Capel A, Lewis MP, Engstrøm DS, Martin S. 3D-printable zwitterionic nano-composite hydrogel system for biomedical applications. J Tissue Eng. 2020;11:2041731420967294.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3:829–36.

    Article  CAS  PubMed  Google Scholar 

  19. Diez-Escudero A, Harlin H, Isaksson P, Persson C. Porous polylactic acid scaffolds for bone regeneration: a study of additively manufactured triply periodic minimal surfaces and their osteogenic potential. J Tissue Eng. 2020;11:2041731420956541.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater. 2010;22:920–32.

    Article  CAS  PubMed  Google Scholar 

  21. Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at physiological pressures by polyzwitterionic brushes. Science. 2009;323:1698–701.

    Article  CAS  PubMed  Google Scholar 

  22. Lim CM, Seo J, Jang H, Seo JH. Optimizing grafting thickness of zwitterionic sulfobetaine polymer on cross-linked polyethylene surface to reduce friction coefficient. Appl Surf Sci. 2018;452:102–12.

    Article  CAS  Google Scholar 

  23. Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl. 2013;52:1636–53.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3:95–101.

    Article  CAS  PubMed  Google Scholar 

  25. Pasquet J, Chevalier Y, Pelletier J, Couval E, Bouvier D, Bolzinger MA. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloid Surf A Physicochem Eng Asp. 2014;457:263–74.

    Article  CAS  Google Scholar 

  26. Paladini F, Pollini M, Sannino A, Ambrosio L. Metal-based antibacterial substrates for biomedical applications. Biomacromolecules. 2015;16:1873–85.

    Article  CAS  PubMed  Google Scholar 

  27. Krishnamoorthy K, Veerapandian M, Zhang LH, Yun K, Kim SJ. Surface chemistry of cerium oxide nanocubes: toxicity against pathogenic bacteria and their mechanistic study. J Ind Eng Chem. 2014;20:3513–7.

    Article  CAS  Google Scholar 

  28. Weng X, Ji Y, Zhao F, An Q, Gao C. Tailoring the structure of polyamide thin film composite membrane with zwitterions to achieve high water permeability and antifouling property. RSC Adv. 2015;5:98730–9.

    Article  CAS  Google Scholar 

  29. Hu X, Lin X, Zhao H, Chen Z, Yang J, Li F, et al. Surface functionalization of polyethersulfone membrane with quaternary ammonium salts for contact-active antibacterial and anti-biofouling properties. Materials (Basel). 2016;9:376.

    Article  Google Scholar 

  30. Lowe AB, Vamvakaki M, Wassall MA, Wong L, Billingham NC, Armes SP, et al. Well-defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings. J Biomed Mater Res. 2000;52:88–94.

    Article  CAS  PubMed  Google Scholar 

  31. Kasmi N, Roso M, Hammami N, Majdoub M, Boaretti C, Sgarbossa P, et al. Microwave-assisted synthesis of isosorbide-derived diols for the preparation of thermally stable thermoplastic polyurethane. Des Monomers Polym. 2017;20:547–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Xiong Z, Zhang L, Tang Z, Zhang R, Zhu J. Isosorbide dioctoate as a “green” plasticizer for poly(lactic acid). Mater Des. 2016;91:262–8.

    Article  CAS  Google Scholar 

  33. Kim BK, Lee SY, Xu M. Polyurethanes having shape memory effects. Polymer (Guildf). 1996;37:5781–93.

    Article  CAS  Google Scholar 

  34. Yin B, Hakkarainen M. Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC. J Appl Polym Sci. 2011;119:2400–7.

    Article  CAS  Google Scholar 

  35. Chang Y, Chang WJ, Shih YJ, Wei TC, Hsiue GH. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization. ACS Appl Mater Interfaces. 2011;3:1228–37.

    Article  CAS  PubMed  Google Scholar 

  36. Bengani-Lutz P, Converse E, Cebe P, Asatekin A. Self-Assembling zwitterionic copolymers as membrane selective layers with excellent fouling resistance: effect of zwitterion chemistry. ACS Appl Mater Interfaces. 2017;9:20859–72.

    Article  CAS  PubMed  Google Scholar 

  37. Zanini S, Müller M, Riccardi C, Orlandi M. Polyethylene glycol grafting on polypropylene membranes for anti-fouling properties. Plasma Chem Plasma Process. 2007;27:446–57.

    Article  CAS  Google Scholar 

  38. Lee SY, Lee Y, Le Thi P, Oh DH, Park KD. Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices. Biomater Res. 2018;22:3.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tamada Y, Kulik EA, Ikada Y. Simple method for platelet counting. Biomaterials. 1995;16:259–61.

    Article  CAS  PubMed  Google Scholar 

  40. Sivaraman B, Latour RA. The relationship between platelet adhesion on surfaces and the structure versus the amount of adsorbed fibrinogen. Biomaterials. 2010;31:832–9.

    Article  CAS  PubMed  Google Scholar 

  41. Yue WW, Li HJ, Xiang T, Qin H, Sun SD, Zhao CS. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. J Memb Sci. 2013;446:79–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Next Generation Medical Device Platform Program (2015M3A9E2028580), the Basic Science Research Program (2020R1A2B5B0300234), and the Korea Medical Device Development Fund funded by the Korea Government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, and the Ministry of Food and Drug Safety, Republic of Korea) (202011B31 and 202011A05-05) through the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Keun Han or Yoon Ki Joung.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ga, DH., Lim, CM., Jang, Y. et al. Surface-Modifying Effect of Zwitterionic Polyurethane Oligomers Complexed with Metal Ions on Blood Compatibility. Tissue Eng Regen Med 19, 35–47 (2022). https://doi.org/10.1007/s13770-021-00400-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-021-00400-w

Keywords

Navigation