Skip to main content
Log in

Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

BACKGROUND:

Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering.

METHODs:

Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database.

RESULTS:

Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering.

CONCLUSION:

Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Orabi H, Bouhout S, Morissette A, Rousseau A, Chabaud S, Bolduc S. Tissue engineering of urinary bladder and urethra: advances from bench to patients. ScientificWorldJournal. 2013;2013:154564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Orabi H, Goulet CR, Fradette J, Bolduc S. Adipose-derived stem cells—are they the optimal cell source for urinary tract regeneration? In: Eberli D, editor. Cells and biomaterials in regenerative medicine. London: IntechOpen; 2014. https://doi.org/10.5772/59223.

    Chapter  Google Scholar 

  3. Chung YG, Tu D, Franck D, Gil ES, Algarrahi K, Adam RM, et al. Acellular bi-layer silk fibroin scaffolds support tissue regeneration in a rabbit model of onlay urethroplasty. PLoS One. 2014;9:e91592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Kemp V, de Graaf P, Fledderus JO, Ruud Bosch JL, de Kort LM. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One. 2015;10:e0118653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A. Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet. 2011;377:1175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mangera A, Chapple CR. Tissue engineering in urethral reconstruction—an update. Asian J Androl. 2013;15:89–92.

    Article  CAS  PubMed  Google Scholar 

  7. Rogovaya OS, Fayzulin AK, Vasiliev AV, Kononov AV, Terskikh VV. Reconstruction of rabbit urethral epithelium with skin keratinocytes. Acta Naturae. 2015;7:70–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oikarinen A, Sandberg M, Hurskainen T, Kinnunen T, Kallioinen M. Collagen biosynthesis in lichen sclerosus et atrophicus studied by biochemical and in situ hybridization techniques. Acta Derm Venereol Suppl (Stockh). 1991;162:3–12.

    CAS  Google Scholar 

  9. Xue JD, Gao J, Fu Q, Feng C, Xie H. Seeding cell approach for tissue-engineered urethral reconstruction in animal study: a systematic review and meta-analysis. Exp Biol Med (Maywood). 2016;241:1416–28.

    Article  CAS  Google Scholar 

  10. Mahfouz W, Elsalmy S, Corcos J, Fayed AS. Fundamentals of bladder tissue engineering. Afr J Urol. 2013;19:51–7.

    Article  Google Scholar 

  11. Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 2007;99:1162–5.

    Article  PubMed  Google Scholar 

  12. Jiang S, Xu Z, Zhao Y, Yan L, Zhou Z, Gu G. Urethral reconstruction using mesothelial cell-seeded autogenous granulation tissue tube: an experimental study in male rabbits. Biomed Res Int. 2017;2017:1850256.

    PubMed  PubMed Central  Google Scholar 

  13. Bhargava S, Patterson JM, Inman RD, MacNeil S, Chapple CR. Tissue-engineered buccal mucosa urethroplasty-clinical outcomes. Eur Urol. 2008;53:1263–71.

    Article  PubMed  Google Scholar 

  14. Orabi H, Aboushwareb T, Zhang Y, Yoo JJ, Atala A. Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol. 2013;63:531–8.

    Article  PubMed  Google Scholar 

  15. Mousa NA, Abou-Taleb HA, Orabi H. Stem cell applications for pathologies of the urinary bladder. World J Stem Cells. 2015;7:815–22.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Subramaniam R, Hinley J, Stahlschmidt J, Southgate J. Tissue engineering potential of urothelial cells from diseased bladders. J Urol. 2011;186:2014–20.

    Article  CAS  PubMed  Google Scholar 

  17. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    Article  CAS  PubMed  Google Scholar 

  18. Osborn SL, Thangappan R, Luria A, Lee JH, Nolta J, Kurzrock EA. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med. 2014;3:610–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lv X, Guo Q, Han F, Chen C, Ling C, Chen W, et al. Electrospun poly(l-lactide)/poly(ethylene glycol) scaffolds seeded with human amniotic mesenchymal stem cells for urethral epithelium repair. Int J Mol Sci. 2016;17:E1262.

    Article  CAS  PubMed  Google Scholar 

  20. Tian H, Bharadwaj S, Liu Y, Ma PX, Atala A, Zhang Y. Differentiation of human bone marrow mesenchymal stem cells into bladder cells: potential for urological tissue engineering. Tissue Eng Part A. 2010;16:1769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu J, Huang J, Lin T, Zhang C, Yin X. Cell-to-cell contact induces human adipose tissue-derived stromal cells to differentiate into urothelium-like cells in vitro. Biochem Biophys Res Commun. 2009;390:931–6.

    Article  CAS  PubMed  Google Scholar 

  22. Qin D, Long T, Deng J, Zhang Y. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther. 2014;5:69.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu JS, Bury MI, Fuller NJ, Sturm RM, Ahmad N, Sharma AK. Bone marrow stem/progenitor cells attenuate the inflammatory milieu following substitution urethroplasty. Sci Rep. 2016;6:35638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blasi A, Martino C, Balducci L, Saldarelli M, Soleti A, Navone SE, et al. Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vasc Cell. 2011;3:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leto Barone AA, Khalifian S, Lee WP, Brandacher G. Immunomodulatory effects of adipose-derived stem cells: fact or fiction? Biomed Res Int. 2013;2013:383685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.

    Article  CAS  PubMed  Google Scholar 

  27. Li H, Xu Y, Xie H, Li C, Song L, Feng C, et al. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A. 2014;20:774–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wen F, Chang S, Toh YC, Teoh SH, Yu H. Development of poly (lactic-co-glycolic acid)-collagen scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2007;27:285–92.

    Article  CAS  Google Scholar 

  29. Margolis G, Polyak B, Cohen S. Magnetic induction of multiscale anisotropy in macroporous alginate scaffolds. Nano Lett. 2018;18:7314–22.

    Article  CAS  PubMed  Google Scholar 

  30. Fu WJ, Wang ZX, Li G, Zhang BH, Zhang L, Hu K, et al. A surface-modified biodegradable urethral scaffold seeded with urethral epithelial cells. Chin Med J (Engl). 2011;124:3087–92.

    CAS  PubMed  Google Scholar 

  31. Stachewicz U, Szewczyk PK, Kruk A, Barber AH, Czyrska-Filemonowicz A. Pore shape dependence on cells growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater Sci Eng C Mater Biol Appl. 2017;95:397–408.

    Article  CAS  PubMed  Google Scholar 

  32. Figallo E, Flaibani M, Zavan B, Abatangelo G, Elvassore N. Micropatterned biopolymer 3D scaffold for static and dynamic culture of human fibroblasts. Biotechnol Prog. 2007;23:210–6.

    Article  CAS  PubMed  Google Scholar 

  33. Selim M, Bullock AJ, Blackwood KA, Chapple CR, MacNeil S. Developing biodegradable scaffolds for tissue engineering of the urethra. BJU Int. 2011;107:296–302.

    Article  CAS  PubMed  Google Scholar 

  34. Lv XG, Feng C, Fu Q, Xie H, Wang Y, Huang JW, et al. Comparative study of different seeding methods based on a multilayer SIS scaffold: which is the optimal procedure for urethral tissue engineering? J Biomed Mater Res Part B Appl Biomater. 2016;104:1098–108.

    Article  CAS  Google Scholar 

  35. Wang F, Liu T, Yang L, Zhang G, Liu H, Yi X, et al. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med Sci Monit. 2014;20:2430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simões IN, Vale P, Soker S, Atala A, Keller D, Noiva R, et al. Acellular urethra bioscaffold: decellularization of whole urethras for tissue engineering applications. Sci Rep. 2017;7:41934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Feng C, Xu YM, Fu Q, Zhu WD, Cui L. Reconstruction of three dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A. 2011;17:3011–9.

    Article  CAS  PubMed  Google Scholar 

  38. Pinnagoda K, Larsson HM, Vythilingam G, Vardar E, Engelhardt EM, Thambidorai RC, et al. Acta Biomaterialia engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta Biomater. 2016;43:208–17.

    Article  CAS  PubMed  Google Scholar 

  39. Yan H, Zhong L, Jiang Y, Yang J, Deng J, Wei S, et al. Controlled release of insulin-like growth factor 1 enhances urethral sphincter function and histological structure in the treatment of female stress urinary incontinence in a rat model. BJU Int. 2018;121:301–12.

    Article  CAS  PubMed  Google Scholar 

  40. Raddatz L, Lavrentieva A, Pepelanova I, Bahnemann J, Geier D, Becker T, et al. Development and application of an additively manufactured calcium chloride nebulizer for alginate 3D-bioprinting purposes. J Funct Biomater. 2018;9:E63.

    Article  CAS  PubMed  Google Scholar 

  41. Wang DJ, Li MY, Huang WT, Lu MH, Hu C, Li K, et al. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect Tissue Res. 2015;56:434–9.

    Article  CAS  PubMed  Google Scholar 

  42. Naji M, Rasouli J, Shakhssalim N, Dehghan MM, Soleimani M. Supportive features of a new hybrid scaffold for urothelium engineering. Arch Med Sci. 2015;11:438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang K, Guo X, Zhao W, Niu G, Mo X, Fu Q. Application of Wnt pathway inhibitor delivering scaffold for inhibiting fibrosis in urethra strictures: in vitro and in vivo study. Int J Mol Sci. 2015;16:27659–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chun SY, Kim BS, Kwon SY, Park SI, Song PH, Yoo ES, et al. Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model. J Korean Med Sci. 2015;30:301–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sayeg K, Freitas-Filho LG, Waitzberg ÂF, Arias VE, Laks M, Egydio FM, et al. Integration of collagen matrices into the urethra when implanted as onlay graft. Int Braz J Urol. 2013;39:414–23.

    Article  PubMed  Google Scholar 

  46. Davis NF, Callanan A, McGuire BB, Flood HD, McGloughlin TM. Evaluation of viability and proliferative activity of human urothelial cells cultured onto xenogenic tissue-engineered extracellular matrices. Urology. 2011;77:1007.e1–7.

  47. Liu Y, Ma W, Liu B, Wang Y, Chu J, Xiong G, et al. Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther. 2017;8:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xie M, Song L, Wang J, Fan S, Zhang Y, Xu Y. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res. 2013;184:774–81.

    Article  CAS  PubMed  Google Scholar 

  49. Algarrahi K, Affas S, Sack BS, Yang X, Costa K, Seager C, et al. Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. J Surg Res. 2018;229:192–9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tian B, Song L, Liang T, Li Z, Ye X, Fu Q, et al. Repair of urethral defects by an adipose mesenchymal stem cell—porous silk fibroin material. Mol Med Rep. 2018;18:209–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sartoneva R, Haimi S, Miettinen S, Mannerström B, Haaparanta AM, Sándor GK, et al. Comparison of a poly-l-lactide-co-ε-caprolactone and human amniotic membrane for urothelium tissue engineering applications. J R Soc Interface. 2011;8:671–7.

    Article  CAS  PubMed  Google Scholar 

  52. Kaye R, Goldstein T, Grande DA, Zeltsman D, Smith LP. A 3-dimensional bioprinted tracheal segment implant pilot study: rabbit tracheal restriction with graft implantation. Int J Pediatr Otorhinolaryngol. 2019;117:175–8.

    Article  PubMed  Google Scholar 

  53. Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: a technological marvel. J Clin Orthop Trauma. 2018;9:260–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Biomaterials Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130–9.

    Article  CAS  PubMed  Google Scholar 

  55. Drzewiecki KE, Malavade JN, Ahmed I, Lowe CJ, Shreiber DI. A thermoreversible, photocrosslinkable collagen bio-ink for free-form fabrication of scaffolds for regenerative medicine. Technology (Singap World Sci). 2017;5:185–95.

    Google Scholar 

  56. Axpe E, Oyen ML. Applications of alginate-based bioinks in 3D bioprinting. Int J Mol Sci. 2016;17:E1976.

    Article  CAS  PubMed  Google Scholar 

  57. Bell A, Kofron M, Nistor V. Multiphoton crosslinking for biocompatible 3D printing of type I collagen. Biofabrication. 2015;7:035007.

    Article  CAS  PubMed  Google Scholar 

  58. Pati F, Jang J, Lee JW, Cho DW. Extrusion bioprinting. In: Atala A, Yoo J, editors. Essential of 3D biofabrication and translation. San Diego: Academic press Elisevier; 2015. p. 123–52.

  59. Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, et al. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater. 2017;50:154–64.

    Article  CAS  PubMed  Google Scholar 

  60. Morissette A, Imbeault A, Cattan V, Bernard G, Taillon G, Chabaud S, et al. Strategies to reconstruct a functional urethral substitute by self-assembly method. Procedia Eng. 2013;59:193–200.

    Article  CAS  Google Scholar 

  61. Magnan M, Lévesque P, Gauvin R, Dubé J, Barrieras D, El-Hakim A, et al. Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures. Tissue Eng Part A. 2009;15:197–202.

    Article  CAS  PubMed  Google Scholar 

  62. Vallières K, Laterreur V, Tondreau MY, Ruel J, Germain L, Fradette J, et al. Human adipose-derived stromal cells for the production of completely autologous self-assembled tissue-engineered vascular substitutes. Acta Biomater. 2015;24:209–19.

    Article  CAS  PubMed  Google Scholar 

  63. Bouhout S, Gauvin R, Gibot L, Aubé D, Bolduc S. Bladder substitute reconstructed in a physiological pressure environment. J Pediatr Urol. 2011;7:276–82.

    Article  PubMed  Google Scholar 

  64. Rousseau A, Fradette J, Bernard G, Gauvin R, Laterreur V, Bolduc S. Adipose-derived stromal cells for the reconstruction of a human vesical equivalent. J Tissue Eng Regen Med. 2013;9:E135–43.

    Article  CAS  PubMed  Google Scholar 

  65. Seifarth V, Grosse JO, Gossmann M, Janke HP, Arndt P, Koch S, et al. Mechanical induction of bi-directional orientation of primary porcine bladder smooth muscle cells in tubular fibrin-poly(vinylidene fluoride) scaffolds for ureteral and urethral repair using cyclic and focal balloon catheter stimulation. J Biomater Appl. 2017;32:321–30.

    Article  CAS  PubMed  Google Scholar 

  66. Cattan V, Bernard G, Rousseau A, Bouhout S, Chabaud S, Auger FA, et al. Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft. Eur Urol. 2011;60:1291–8.

    Article  PubMed  Google Scholar 

  67. Vardar E, Engelhardt EM, Larsson HM, Mouloungui E, Pinnagoda K, Hubbell JA, et al. Tubular compressed collagen scaffolds for ureteral tissue engineering in a flow bioreactor system. Tissue Eng Part A. 2015;21:2334–45.

    Article  CAS  PubMed  Google Scholar 

  68. Imbeault A, Bernard G, Rousseau A, Morissette A, Chabaud S, Bouhout S, et al. An endothelialized urothelial cell-seeded tubular graft for urethral replacement. Can Urol Assoc J. 2013;7:E4–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou S, Yang R, Zou Q, Zhang K, Yin T, Zhao W, et al. Fabrication of tissue-engineered bionic urethra using cell sheet technology and labeling by ultrasmall superparamagnetic iron oxide for full-thickness urethral reconstruction. Theranostics. 2017;7:2509–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun D, Yang Y, Wei Z, Xu Y, Zhang X, Hong B. Engineering of pre-vascularized urethral patch with muscle flaps and hypoxia-activated hUCMSCs improves its therapeutic outcome. J Cell Mol Med. 2014;18:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu J, Hao H, Huang H, Tong C, Ti D, Dong L, et al. Hypoxia regulates the therapeutic potential of mesenchymal stem cells through enhanced autophagy. Int J Low Extrem Wounds. 2015;14:63–72.

    Article  CAS  PubMed  Google Scholar 

  72. Li C, Xu YM, Liu ZS, Li HB. Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits. Urology. 2013;81:1075–80.

    Article  PubMed  Google Scholar 

  73. Chen KL, Wu HC, Chang CH. Tissue-engineered constructs for urethral regeneration. Urol Sci. 2012;23:42–4.

    Article  CAS  Google Scholar 

  74. El-Tabey N, Shokeir A, Barakat N, El-Refaie H, El-Hamid MA, Gabr M. Cell-seeded tubular acellular matrix for replacing a long circumferential urethral defect in a canine model: is it clinically applicable? Arab J Urol. 2012;10:192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fu Q, Deng CL, Song XF, Xu YM. Long-term study of male rabbit urethral mucosa reconstruction using epidermal cell. Asian J Androl. 2008;10:719–22.

    Article  PubMed  Google Scholar 

  76. Osman NI, Patterson JM, MacNeil S, Chapple CR. Long-term follow-up after tissue-engineered buccal mucosa urethroplasty. Eur Urol. 2014;66:790–1.

    Article  PubMed  Google Scholar 

  77. da Silva EA, Sampaio FJ, Ortiz V, Cardoso LE. Regional differences in the extracellular matrix of the human spongy urethra as evidenced by the composition of glycosaminoglycans. J Urol. 2002;167:2183–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This review paper was supported by grants from Universiti Kebangsaan Malaysia (GUP-2017-092 and FF-2017-227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Hwei Ng.

Ethics declarations

Conflict of interest

The authors declare that there are no financial conflicts of interest regarding the publication of this paper.

Ethical statement

There are no animal and human experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidbenam, Z., Jasman, M.H., Hafez, P. et al. Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction. Tissue Eng Regen Med 16, 365–384 (2019). https://doi.org/10.1007/s13770-019-00193-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-019-00193-z

Keywords

Navigation