Skip to main content
Log in

Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

It is controversial whether type I collagen itself can maintain and improve chondrogenic phenotype of chondrocytes in a three-dimensional (3D) environment. In this study, we examined the effect of type I collagen concentration in hydrogel (0.5, 1, and 2 mg/ml) on the growth and phenotype expression of rat chondrocytes in vitro. All collagen hydrogels showed substantial contractions during culture, in a concentration-dependent manner, which was due to the cell proliferation. The cell viability was shown to be the highest in 2 mg/ml collagen gel. The mRNA expression of chondrogenic phenotypes, including SOX9, type II collagen, and aggrecan, was significantly up-regulated, particularly in 1 mg/ml collagen gel. Furthermore, the production of type II collagen and glycosaminoglycan (GAG) content was also enhanced. The results suggest that type I collagen hydrogel is not detrimental to, but may be useful for, the chondrocyte culture for cartilage tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang AH, Farrell MJ, Mauck RL. Mechanics and mechanobiology of mesenchymal stem cell-based engineered cartilage. J Biomech. 2010;43:128–36.

    Article  PubMed  Google Scholar 

  2. Pulkkinen HJ, Tiitu V, Valonen P, Jurvelin JS, Lammi MJ, Kiviranta I. Engineering of cartilage in recombinant human type II collagen gel in nude mouse model in vivo. Osteoarthritis Cartilage. 2010;18:1077–87.

    Article  CAS  PubMed  Google Scholar 

  3. Pulkkinen HJ, Tiitu V, Valonen P, Hamalainen ER, Lammi MJ, Kiviranta I. Recombinant human type II collagen as a material for cartilage tissue engineering. Int J Artif Organs. 2008;31:960–9.

    CAS  PubMed  Google Scholar 

  4. Ricard-Blum S. The collagen family. Cold Spring Harb Perspect Biol. 2011;3:a004978.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, et al. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials. 2005;26:311–8.

    Article  CAS  PubMed  Google Scholar 

  6. Oh SA, Lee HY, Lee JH, Kim TH, Jang JH, Kim HW, et al. Collagen three-dimensional hydrogel matrix carrying basic fibroblast growth factor for the cultivation of mesenchymal stem cells and osteogenic differentiation. Tissue Eng Part A. 2012;18:1087–100.

    Article  CAS  PubMed  Google Scholar 

  7. Lee JH, El-Fiqi A, Han CM, Kim HW. Physically-strengthened collagen bioactive nanocomposite gels for bone: a feasibility study. Tissue Eng Regen Med. 2015;12:90–7.

    Article  CAS  Google Scholar 

  8. Yasui N, Osawa S, Ochi T, Nakashima H, Ono K. Primary culture of chondrocytes embedded in collagen gels. Exp Cell Biol. 1982;50:92–100.

    CAS  PubMed  Google Scholar 

  9. Negri S, Fila C, Farinato S, Bellomi A, Pagliaro PP. Tissue engineering: chondrocyte culture on type 1 collagen support. Cytohistological and immunohistochemical study. J Tissue Eng Regen Med. 2007;1:158–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mahapatra C, Jin GZ, Kim HW. Alginate-hyaluronic acid-collagen composite hydrogel favorable for the culture of chondrocytes and their phenotype maintenance. Tissue Eng Regen Med. 2016;13:538–46.

    Article  CAS  Google Scholar 

  11. Nöth U, Siebenlist S, Rackwitz L, Schreiber B, Steinert A, Barthel T, Eulert J. Matrix-based autologous chondrocyte transplantation for the treatment of large osteochondral defects. London: Touch Briefings; 2006. p. 62–4.

    Google Scholar 

  12. Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee. 2006;13:194–202.

    Article  PubMed  Google Scholar 

  13. Chen CW, Tsai YH, Deng WP, Shih SN, Fang CL, Burch JG, et al. Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells. J Orthop Res. 2005;23:446–53.

    Article  CAS  PubMed  Google Scholar 

  14. Farjanel J, Schürmann G, Bruckner P. Contacts with fibrils containing collagen I, but not collagens II, IX, and XI, can destabilize the cartilage phenotype of chondrocytes. Osteoarthritis Cartilage. 2001;9(Suppl A):S55–63.

    Article  PubMed  Google Scholar 

  15. Mayne R, Vail MS, Mayne PM, Miller EJ. Changes in type of collagen synthesized as clones of chick chondrocytes grow and eventually lose division capacity. Proc Natl Acad Sci USA. 1976;73:1674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jin GZ, Kim HW. Porous microcarrier-enabled three-dimensional culture of chondrocytes for cartilage engineering: a feasibility study. Tissue Eng Regen Med. 2016;13:235–41.

    Article  CAS  Google Scholar 

  17. Nöth U, Rackwitz L, Heymer A, Weber M, Baumann B, Steinert A, et al. Chondrogenic differentiation of human mesenchymal stem cells in collagen type I hydrogels. J Biomed Mater Res A. 2007;83:626–35.

    Article  PubMed  Google Scholar 

  18. Lee JH, Yu HS, Lee GS, Ji A, Hyun JK, Kim HW. Collagen gel three-dimensional matrices combined with adhesive proteins stimulate neuronal differentiation of mesenchymal stem cells. J R Soc Interface. 2011;8:998–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bozkurt A, Boecker A, Tank J, Altinova H, Deumens R, Dabhi C, et al. Efficient bridging of 20 mm rat sciatic nerve lesions with a longitudinally micro-structured collagen scaffold. Biomaterials. 2016;75:112–22.

    Article  CAS  PubMed  Google Scholar 

  20. Gigante A, Busilacchi A, Lonzi B, Cecconi S, Manzotti S, Renghini C, et al. Purified collagen I oriented membrane for tendon repair: an ex vivo morphological study. J Orthop Res. 2013;31:738–45.

    Article  CAS  PubMed  Google Scholar 

  21. Yunoki S, Hatayama H, Ebisawa M, Kondo E, Yasuda K. A novel fabrication method to create a thick collagen bundle composed of uniaxially aligned fibrils: an essential technology for the development of artificial tendon/ligament matrices. J Biomed Mater Res A. 2015;103:3054–65.

    Article  CAS  PubMed  Google Scholar 

  22. Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br. 2005;87:640–5.

    Article  CAS  PubMed  Google Scholar 

  23. Andereya S, Maus U, Gavenis K, Müller-Rath R, Miltner O, Mumme T, et al. First clinical experiences with a novel 3D-collagen gel (CaReS) for the treatment of focal cartilage defects in the knee. Z Orthop Ihre Grenzgeb. 2006;144:272–80.

    Article  CAS  PubMed  Google Scholar 

  24. Zhu YK, Umino T, Liu XD, Wang HJ, Romberger DJ, Spurzem JR, et al. Contraction of fibroblast-containing collagen gels: initial collagen concentration regulates the degree of contraction and cell survival. In vitro Cell Dev Biol Anim. 2001;37:10–6.

    Article  CAS  PubMed  Google Scholar 

  25. Steinberg BM, Smith K, Colozzo M, Pollack R. Establishment and transformation diminish the ability of fibroblasts to contract a native collagen gel. J Cell Biol. 1980;87:304–8.

    Article  CAS  PubMed  Google Scholar 

  26. Visscher DO, Bos EJ, Peeters M, Kuzmin NV, Groot ML, Helder MN, et al. Cartilage tissue engineering: preventing tissue scaffold contraction using a 3D-printed polymeric cage. Tissue Eng Part C Methods. 2016;22:573–84.

    Article  CAS  PubMed  Google Scholar 

  27. Sheu MT, Huang JC, Yeh GC, Ho HO. Characterization of collagen gel solutions and collagen matrices for cell culture. Biomaterials. 2001;22:1713–9.

    Article  CAS  PubMed  Google Scholar 

  28. Brougham CM, Levingstone TJ, Jockenhoevel S, Flanagan TC, O’Brien FJ. Incorporation of fibrin into a collagen-glycosaminoglycan matrix results in a scaffold with improved mechanical properties and enhanced capacity to resist cell-mediated contraction. Acta Biomater. 2015;26:205–14.

    Article  CAS  PubMed  Google Scholar 

  29. LeBaron RG, Athanasiou KA. Ex vivo synthesis of articular cartilage. Biomaterials. 2000;21:2575–87.

    Article  CAS  PubMed  Google Scholar 

  30. Puelacher WC, Kim SW, Vacanti JP, Schloo B, Mooney D, Vacanti CA. Tissue-engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices. Int J Oral Maxillofac Surg. 1994;23:49–53.

    Article  CAS  PubMed  Google Scholar 

  31. Park DY, Min BH, Lee HJ, Kim YJ, Choi BH. Repair of partial thickness cartilage defects using cartilage extracellular matrix membrane-based chondrocyte delivery system in human ex vivo model. Tissue Eng Regen Med. 2016;13:182–90.

    Article  CAS  Google Scholar 

  32. Loeser RF. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 2014;39:11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pozzi A, Wary KK, Giancotti FG, Gardner HA. Integrin alpha1beta1 mediates a unique collagen-dependent proliferation pathway in vivo. J Cell Biol. 1998;142:587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guha Thakurta S, Budhiraja G, Subramanian A. Growth factor and ultrasound-assisted bioreactor synergism for human mesenchymal stem cell chondrogenesis. J Tissue Eng. 2015;6:2041731414566529.

    PubMed  Google Scholar 

  35. do Amaral RJ, Matsiko A, Tomazette MR, Rocha WK, Cordeiro-Spinetti E, Levingstone TJ, et al. Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration. J Tissue Eng. 2015;6:2041731415594127.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abdul Rahman R, Ahmad Radzi MA, Mohamad Sukri N, Md Nazir N, Sha’ban M. Tissue engineering of articular cartilage: from bench to bed-side. Tissue Eng Regen Med. 2015;12:1–11.

    Article  CAS  Google Scholar 

  37. van Susante JL, Buma P, van Osch GJ, Versleyen D, van der Kraan PM, van der Berg WB, et al. Culture of chondrocytes in alginate and collagen carrier gels. Acta Orthop Scand. 1995;66:549–56.

    Article  PubMed  Google Scholar 

  38. Benya PD, Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–24.

    Article  CAS  PubMed  Google Scholar 

  39. Häuselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB, et al. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994;107:17–27.

    PubMed  Google Scholar 

  40. Benya PD. Modulation and reexpression of the chondrocyte phenotype; mediation by cell shape and microfilament modification. Pathol Immunopathol Res. 1988;7:51–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Priority Research Centers Program (2009-0093829) through the National Research Foundation (NRF) founded by the Korea Ministry of Education, Science and Technology, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhen Jin.

Ethics declarations

Conflict of interest

The authors have no financial conflict of interest.

Ethical statement

The chondrocyte isolation from Sprague–Dawley rats was according to the consent from Dankook University Institutional Animal Care and Use Committee (DKU-IRB-2014-039).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, GZ., Kim, HW. Effects of Type I Collagen Concentration in Hydrogel on the Growth and Phenotypic Expression of Rat Chondrocytes. Tissue Eng Regen Med 14, 383–391 (2017). https://doi.org/10.1007/s13770-017-0060-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0060-3

Keywords

Navigation