Skip to main content
Log in

Endothelial Progenitor Cells’ Classification and Application in Neurological Diseases

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The therapeutic effects of endothelial progenitor cells (EPCs) on ischemic stroke have been extensively studied in recent years. However, the differences in early EPCs and endothelial outgrowth cells (EOCs) are still unclear. Clarifications of their respective properties and specific functioning characteristics contribute to better applications of EPCs in ischemic diseases. In this review, we discuss cellular origin, isolation, culture, surface markers of early EPCs and EOCs and relevant applications in neurological diseases. We conclude that EOCs possess all characteristics of true endothelial progenitors and have potent advantages in EPC-based therapies for ischemic diseases. A number of preclinical and clinical applications of EPCs in neurological diseases are under study. More studies are needed to determine the specific characteristics of EPCs and the relevant mechanisms of EPCs for neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson MR, Yoder MC. Endothelial progenitor cells: quo vadis. J Mol Cell Cardiol. 2011;50:266–72.

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill CL, O’Doherty MT, Wilson SE, Rana AA, Hirst CE, Stitt AW, et al. Therapeutic revascularisation of ischaemic tissue: the opportunities and challenges for therapy using vascular stem/progenitor cells. Stem Cell Res Ther. 2012;3:31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fang S, Wei J, Pentinmikko N, Leinonen H, Salven P. Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol. 2012;10:e1001407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balaji S, King A, Crombleholme TM, Keswani SG. The role of endothelial progenitor cells in postnatal vasculogenesis: implications for therapeutic neovascularization and wound healing. Adv Wound Care (New Rochelle). 2013;2:283–95.

    Article  Google Scholar 

  5. Zaccone V, Flore R, Santoro L, De Matteis G, Giupponi B, Li PDD, et al. Focus on biological identity of endothelial progenitors cells. Eur Rev Med Pharmacol Sci. 2015;19:4047–63.

    CAS  PubMed  Google Scholar 

  6. Cheng CC, Lo HH, Huang TS, Cheng YC, Chang ST, Chang SJ, et al. Genetic module and miRNome trait analyses reflect the distinct biological features of endothelial progenitor cells from different anatomic locations. BMC Genom. 2012;13:447.

    Article  CAS  Google Scholar 

  7. Rocha V, Gluckman E. Improving outcomes of cord blood transplantation: HLA matching, cell dose and other graft- and transplantation-related factors. Br J Haematol. 2009;147:262–74.

    Article  CAS  PubMed  Google Scholar 

  8. Janic B, Arbab AS. Cord blood endothelial progenitor cells as therapeutic and imaging probes. Imaging Med. 2012;4:477–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rose JA, Erzurum S, Asosingh K. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells. Cytom A. 2015;87:5–19.

    Article  Google Scholar 

  10. Ormiston ML, Toshner MR, Kiskin FN, Huang CJ, Groves E, Morrell NW, et al. Generation and culture of blood outgrowth endothelial cells from human peripheral blood. J Vis Exp. 2015. doi:10.3791/53384.

  11. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation. 2005;112:1618–27.

    Article  PubMed  Google Scholar 

  12. Prasain N, Meador JL, Yoder MC. Phenotypic and functional characterization of endothelial colony forming cells derived from human umbilical cord blood. J Vis Exp. 2012. doi:10.3791/3872.

  13. Tan K. Sun X [Research and clinical applications regarding endothelial progenitor cell transplantation]. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39:1211–6.

    CAS  PubMed  Google Scholar 

  14. Basile DP, Yoder MC. Circulating and tissue resident endothelial progenitor cells. J Cell Physiol. 2014;229:10–6.

    CAS  PubMed  Google Scholar 

  15. O E, Lee BH, Ahn HY, Shin JC, Kim HK, Kim M, et al. Efficient nonadhesive ex vivo expansion of early endothelial progenitor cells derived from CD34+ human cord blood fraction for effective therapeutic vascularization. FASEB J. 2011;25:159–69.

    Article  PubMed  Google Scholar 

  16. Kolbe M, Dohle E, Katerla D, Kirkpatrick CJ, Fuchs S. Enrichment of outgrowth endothelial cells in high and low colony-forming cultures from peripheral blood progenitors. Tissue Eng Part C Methods. 2010;16:877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tasev D, van Wijhe MH, Weijers EM, van Hinsbergh VW, Koolwijk P. Long-term expansion in platelet lysate increases growth of peripheral blood-derived endothelial-colony forming cells and their growth factor-induced sprouting capacity. PLoS ONE. 2015;10:e0129935.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, et al. Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res. 2003;93:1023–5.

    Article  CAS  PubMed  Google Scholar 

  19. Marçola M, Rodrigues CE. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall. Stem Cells Int. 2015;2015:832649.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, et al. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109:1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Critser PJ, Yoder MC. Endothelial colony-forming cell role in neoangiogenesis and tissue repair. Curr Opin Organ Transpl. 2010;15:68–72.

    Article  Google Scholar 

  22. Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, et al. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genom. 2010;3:18.

    Article  Google Scholar 

  23. Huang XT, Zhang YQ, Li SJ, Li SH, Tang Q, Wang ZT, et al. Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. J Neurotrauma. 2013;30:2080–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jarajapu YP, Grant MB. The promise of cell-based therapies for diabetic complications: challenges and solutions. Circ Res. 2010;106:854–69.

    Article  CAS  PubMed  Google Scholar 

  25. Madonna R, De Caterina R. Circulating endothelial progenitor cells: do they live up to their name. Vascul Pharmacol. 2015;67–69:2–5.

    Article  PubMed  Google Scholar 

  26. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2:a006692.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ma F, Morancho A, Montaner J, Rosell A. Endothelial progenitor cells and revascularization following stroke. Brain Res. 2015;1623:150–9.

    Article  CAS  PubMed  Google Scholar 

  28. Burlacu A, Grigorescu G, Rosca AM, Preda MB, Simionescu M. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro. Stem Cells Dev. 2013;22:643–53.

    Article  CAS  PubMed  Google Scholar 

  29. Nih LR, Deroide N, Leré-Déan C, Lerouet D, Soustrat M, Levy BI, et al. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur J Neurosci. 2012;35:1208–17.

    Article  PubMed  Google Scholar 

  30. Zhang ZG, Zhang L, Jiang Q, Chopp M. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002;90:284–8.

    Article  CAS  PubMed  Google Scholar 

  31. Tsuji M, Taguchi A, Ohshima M, Kasahara Y, Sato Y, Tsuda H, et al. Effects of intravenous administration of umbilical cord blood CD34(+) cells in a mouse model of neonatal stroke. Neuroscience. 2014;263:148–58.

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez FF, Larpthaveesarp A, McQuillen P, Derugin N, Wendland M, Spadafora R, et al. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke. 2013;44:753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, et al. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol. 2015;8:33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bigini P, Veglianese P, Andriolo G, Cova L, Grignaschi G, Caron I, et al. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation Res. 2011;14:623–39.

    Article  CAS  PubMed  Google Scholar 

  35. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Piñero P, Espigado I, et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43:2242–4.

    Article  PubMed  Google Scholar 

  36. Chen DC, Lin SZ, Fan JR, Lin CH, Lee W, Lin CC, et al. Intracerebral implantation of autologous peripheral blood stem cells in stroke patients: a randomized phase II study. Cell Transpl. 2014;23:1599–612.

    Article  Google Scholar 

  37. Prasad K, Sharma A, Garg A, Mohanty S, Bhatnagar S, Johri S, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45:3618–24.

    Article  CAS  PubMed  Google Scholar 

  38. Pías-Peleteiro J, Pérez-Mato M, López-Arias E, Rodríguez-Yáñez M, Blanco M, Campos F, et al. Increased endothelial progenitor cell levels are associated with good outcome in intracerebral hemorrhage. Sci Rep. 2016;6:28724.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chung CP, Huang PH, Chen JS, Chen JW, Yang KY. The level of circulating endothelial progenitor cell is associated with cerebral vasoreactivity: a pilot study. Biomed Res Int. 2015;2015:258279.

    PubMed  PubMed Central  Google Scholar 

  40. Liu L, Liu H, Jiao J, Jao J, Liu H, Bergeron A, et al. Changes in circulating human endothelial progenitor cells after brain injury. J Neurotrauma. 2007;24:936–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Natural Science Foundation of China (Grant No. 81401091 to Dr. Rui Zhang) and a grant from the Health Department of Henan Province (Grant No. 201403058 to Dr. Rui Zhang).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Zhang or Yu-ming Xu.

Ethics declarations

Conflicts of interest

None.

Ethical statements

All descriptions were based on previous published studies, thus no ethical approval and patient consent are required.

Additional information

Jing-jing Yuan and Jing Yang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Jj., Yang, J., Sun, Sl. et al. Endothelial Progenitor Cells’ Classification and Application in Neurological Diseases. Tissue Eng Regen Med 14, 327–332 (2017). https://doi.org/10.1007/s13770-017-0043-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0043-4

Keywords

Navigation