Skip to main content
Log in

Effects of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system-Based Deletion of miR-451 in Mouse Embryonic Stem Cells on Their Self-Renewal and Hematopoietic Differentiation

  • NOTE
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Pluripotent stem cells (PSCs) are a useful source of cells for exploring the role of genes related with early developmental processes and specific diseases due to their ability to differentiate into all somatic cell types. Recently, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system has proven to be a robust tool for targeted genetic modification. Here, we generated miR-451-deficient PSCs using the CRISPR/Cas9 system with PCR-based homologous recombination donor and investigated the impact of its deletion on self-renewal and hematopoietic development. CRISPR/Cas9-mediated miR-451 knockout did not alter the gene expressions of pluripotency, cellular morphology, and cell cycle, but led to impaired erythrocyte development. These findings propose that a combination of PSCs and CRISPR/Cas9 system could be useful to promote biomedical applications of PSCs by elucidating the function and manipulating of specific miRNAs during lineage specification and commitment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Romito A, Cobellis G. Pluripotent stem cells: current understanding and future directions. Stem Cells Int. 2016. doi:10.1155/2016/9451492

  2. Ireland RG, Simmons CA. Human pluripotent stem cell mechanobiology: manipulating the biophysical microenvironment for regenerative medicine and tissue engineering applications. Stem Cells. 2015;33:3187–96.

    Article  PubMed  Google Scholar 

  3. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  4. Lee YJ, Ramakrishna S, Chauhan H, Park WS, Hong SH, Kim KS. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regen (Lond). 2016;5:2.

    Google Scholar 

  5. Jin HL, Kim JS, Kim YJ, Kim SJ, Broxmeyer HE, Kim KS. Dynamic expression of specific miRNAs during erythroid differentiation of human embryonic stem cells. Mol Cells. 2012;34:177–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bhin J, Jeong HS, Kim JS, et al. PGC-enriched miRNAs control germ cell development. Mol Cells. 2015;38:895–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153:910–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Heo YT, Quan X, Xu YN, et al. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells Dev. 2015;24:393–402.

    Article  PubMed  CAS  Google Scholar 

  12. Renneville A, Van Galen P, Canver MC, et al. EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression. Blood. 2015;126:1930–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ru R, Yao Y, Yu S, et al. Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen (Lond). 2013;2:5.

    CAS  Google Scholar 

  14. Yan Q, Zhang Q, Yang H, et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system. Cell Regen (Lond). 2014;3:12.

    PubMed Central  Google Scholar 

  15. Zhu S, Rong Z, Lu X, Xu Y, Fu X. Gene targeting through homologous recombination in monkey embryonic stem cells using CRISPR/Cas9 system. Stem Cells Dev. 2015;24:1147–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang K, Du J, Ma N, et al. GATA2(–/–) human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regen (Lond). 2015;4:4.

    Google Scholar 

  17. Harrison MM, Jenkins BV, O’Connor-Giles KM, Wildonger J. A CRISPR view of development. Genes Dev. 2014;28:1859–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Liao J, Karnik R, Gu H, et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet. 2015;47:469–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Song B, Fan Y, He W, et al. Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system. Stem Cells Dev. 2015;24:1053–65.

    Article  PubMed  CAS  Google Scholar 

  20. Tan EP, Li Y, Velasco-Herrera Mdel C, Yusa K, Bradley A. Off-target assessment of CRISPR-Cas9 guiding RNAs in human iPS and mouse ES cells. Genesis. 2015;53:225–36.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou HY, Katsman Y, Dhaliwal NK, et al. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev. 2014;28:2699–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ma Y, Yao N, Liu G, et al. Functional screen reveals essential roles of miR-27a/24 in differentiation of embryonic stem cells. EMBO J. 2015;34:361–78.

    Article  PubMed  CAS  Google Scholar 

  23. Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA. 2008;105:3333–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ghatak S, Muthukumaran RB, Nachimuthu SK. A simple method of genomic DNA extraction from human samples for PCR-RFLP analysis. J Biomol Tech. 2013;24:224–31.

    PubMed  PubMed Central  Google Scholar 

  25. Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 2013;154:1380–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sagi D, Tlusty T, Stavans J. High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity. Nucl Acids Res. 2006;34:5021–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Lesinski DA, Heinz N, Pilat-Carotta S, et al. Serum- and stromal cell-free hypoxic generation of embryonic stem cell-derived hematopoietic cells in vitro, capable of multilineage repopulation of immunocompetent mice. Stem Cells Transl Med. 2012;1:581–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fennell M, Xiang Q, Hwang A, et al. Impact of RNA-guided technologies for target identification and deconvolution. J Biomol Screen. 2014;19:1327–37.

    Article  PubMed  CAS  Google Scholar 

  29. Pase L, Layton JE, Kloosterman WP, Carradice D, Waterhouse PM, Lieschke GJ. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood. 2009;113:1794–804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Papapetrou EP, Korkola JE, Sadelain M. A genetic strategy for single and combinatorial analysis of miRNA function in mammalian hematopoietic stem cells. Stem Cells. 2010;28:287–96.

    PubMed  CAS  Google Scholar 

  31. Patrick DM, Zhang CC, Tao Y, et al. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3zeta. Genes Dev. 2010;24:1614–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rasmussen KD, Simmini S, Abreu-Goodger C, et al. The miR-144/451 locus is required for erythroid homeostasis. J Exp Med. 2010;207:1351–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yu D, dos Santos CO, Zhao G, et al. miR-451 protects against erythroid oxidant stress by repressing 14-3-3zeta. Genes Dev. 2010;24:1620–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kouhkan F, Soleimani M, Daliri M, et al. miR-451 up-regulation, induce erythroid differentiation of CD133+ cells independent of cytokine cocktails. Iran J Basic Med Sci. 2013;16:756–63.

    PubMed  PubMed Central  Google Scholar 

  35. Zhan M, Miller CP, Papayannopoulou T, Stamatoyannopoulos G, Song CZ. MicroRNA expression dynamics during murine and human erythroid differentiation. Exp Hematol. 2007;35:1015–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun. 2007;364:509–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Medical Research Center (2008-0062287) and the Basic Research Lab Program (2015R1A4A1038666) funded by the NRF of the Ministry of Science, ICT & Future Planning, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seok-Ho Hong or Kye-Seong Kim.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical statement

There are no human or animal experiments carried out for this article.

Additional information

Su-Jin Kim and Chang-Hoon Kim have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Kim, CH., An, B. et al. Effects of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein 9 system-Based Deletion of miR-451 in Mouse Embryonic Stem Cells on Their Self-Renewal and Hematopoietic Differentiation. Tissue Eng Regen Med 14, 179–185 (2017). https://doi.org/10.1007/s13770-017-0031-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0031-8

Keywords

Navigation