Skip to main content
Log in

Vascular endothelial growth factor enhances axonal outgrowth in organotypic spinal cord slices via vascular endothelial growth factor receptor 1 and 2

  • Original Article
  • Regenerative Medicine
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Enhancing adult nerve regeneration is a potential therapeutic strategy for treating spinal cord injury. Vascular endothelial growth factor (VEGF) is a major contributor to angiogenesis, which can reduce the spinal cord injury by inhibiting the inflammation and improve recovery after spinal cord injury. We have previously demonstrated that exogenous VEGF has neurotrophic effects on injured spinal nerves in organotypic spinal cord slice cultures. However, the mechanisms underlying the neurite growth by exogenous VEGF remain to be explored in spinal cord. In this study, we found out that exogenous VEGF mediated axonal outgrowth through VEGF receptor 1 (VEGFR1) and VEGFR2, both of which were expressed on organotypic spinal cord slices. Although VEGFR1 and VEGFR2 were constitutively expressed in some cells of control spinal cord slices, VEGF treatment upregulated expression of VEGFR1 and VEGFR2. Both VEGFR1 and VEGFR2 were expressed in neuronal cells as well as glial cells of organotypic spinal cord slices. We also observed that VEGF-induced axonal outgrowth was attenuated by a specific mitogen-activated protein kinase (MAPK) inhibitor PD98059 and a specific phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. Thus, these findings suggest that these MAPK and PI3K pathways have important roles in regulating VEGF-induced axonal outgrowth in the postnatal spinal cord.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 2007;17:120–127.

    Article  CAS  PubMed  Google Scholar 

  2. Crespo D, Asher RA, Lin R, Rhodes KE, Fawcett JW. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol 2007;206:159–171.

    Article  CAS  PubMed  Google Scholar 

  3. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury:a nugget of this multiply cascade. Acta Neurobiol Exp (Wars) 2011;71:281–299.

    Google Scholar 

  4. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000;403:434–439.

    Article  CAS  PubMed  Google Scholar 

  5. Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 2001;21:4731–4739.

    CAS  PubMed  Google Scholar 

  6. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676.

    Article  CAS  PubMed  Google Scholar 

  7. Park HW, Lim MJ, Jung H, Lee SP, Paik KS, Chang MS. Human mesenchymal stem cell-derived Schwann cell-like cells exhibit neurotrophic effects, via distinct growth factor production, in a model of spinal cord injury. Glia 2010;58:1118–1132.

    Article  PubMed  Google Scholar 

  8. Wang H, Wang Y, Li D, Liu Z, Zhao Z, Han D, et al. VEGF inhibits the inflammation in spinal cord injury through activation of autophagy. Biochem Biophys Res Commun 2015;464:453–458.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenstein JM, Mani N, Khaibullina A, Krum JM. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003;23:11036–11044.

    CAS  PubMed  Google Scholar 

  10. Sköld M, Cullheim S, Hammarberg H, Piehl F, Suneson A, Lake S, et al. Induction of VEGF and VEGF receptors in the spinal cord after mechanical spinal injury and prostaglandin administration. Eur J Neurosci 2000;12:3675–3686.

    Article  PubMed  Google Scholar 

  11. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T, Cao Y, et al. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 2003;120:951–960.

    Article  CAS  PubMed  Google Scholar 

  12. Cho JS, Park HW, Park SK, Roh S, Kang SK, Paik KS, et al. Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture. Neurosci Lett 2009;454:43–48.

    Article  CAS  PubMed  Google Scholar 

  13. Nowacka MM, Obuchowicz E. Vascular endothelial growth factor (VEGF) and its role in the central nervous system:a new element in the neurotrophic hypothesis of antidepressant drug action. Neuropeptides 2012;46:1–10.

    Article  CAS  PubMed  Google Scholar 

  14. Carpenter G, Liao HJ. Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res 2009;315:1556–1566.

    Article  CAS  PubMed  Google Scholar 

  15. Vincent L, Jin DK, Karajannis MA, Shido K, Hooper AT, Rashbaum WK, et al. Fetal stromal-dependent paracrine and intracrine vascular endothelial growth factor-a/vascular endothelial growth factor receptor-1 signaling promotes proliferation and motility of human primary myeloma cells. Cancer Res 2005;65:3185–3192.

    CAS  PubMed  Google Scholar 

  16. Zhang Z, Neiva KG, Lingen MW, Ellis LM, Nör JE. VEGF-dependent tumor angiogenesis requires inverse and reciprocal regulation of VEGFR1 and VEGFR2. Cell Death Differ 2010;17:499–512.

    Article  CAS  PubMed  Google Scholar 

  17. Dudley DT, Pang L, Decker SJ, Bridges AJ, Saltiel AR. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci U S A 1995;92:7686–7689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273:30336–30343.

    CAS  PubMed  Google Scholar 

  19. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306–1309.

    Article  CAS  PubMed  Google Scholar 

  20. Lee EJ, Park HW, Jeon HJ, Kim HS, Chang MS. Potentiated therapeutic angiogenesis by primed human mesenchymal stem cells in a mouse model of hindlimb ischemia. Regen Med 2013;8:283–293.

    Article  CAS  PubMed  Google Scholar 

  21. Zimmer J, Gähwiler BH. Cellular and connective organization of slice cultures of the rat hippocampus and fascia dentata. J Comp Neurol 1984;228:432–446.

    Article  CAS  PubMed  Google Scholar 

  22. Buchs PA, Stoppini L, Muller D. Structural modifications associated with synaptic development in area CA1 of rat hippocampal organotypic cultures. Brain Res Dev Brain Res 1993;71:81–91.

    Article  CAS  PubMed  Google Scholar 

  23. Pinkernelle J, Fansa H, Ebmeyer U, Keilhoff G. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One 2013;8:e73422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vyas A, Li Z, Aspalter M, Feiner J, Hoke A, Zhou C, et al. An in vitro model of adult mammalian nerve repair. Exp Neurol 2010;223:112–118.

    Article  CAS  PubMed  Google Scholar 

  25. Louissaint A Jr, Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 2002;34:945–960.

    Article  CAS  PubMed  Google Scholar 

  26. Rosenstein JM, Mani N, Silverman WF, Krum JM. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci U S A 1998;95:7086–7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mani N, Khaibullina A, Krum JM, Rosenstein JM. Astrocyte growth effects of vascular endothelial growth factor (VEGF) application to perinatal neocortical explants:receptor mediation and signal transduction pathways. Exp Neurol 2005;192:394–406.

    Article  CAS  PubMed  Google Scholar 

  28. Zachary I. Neuroprotective role of vascular endothelial growth factor:signalling mechanisms, biological function, and therapeutic potential. Neurosignals 2005;14:207–221.

    Article  CAS  PubMed  Google Scholar 

  29. Brockington A, Wharton SB, Fernando M, Gelsthorpe CH, Baxter L, Ince PG, et al. Expression of vascular endothelial growth factor and its receptors in the central nervous system in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006;65:26–36.

    Article  CAS  PubMed  Google Scholar 

  30. Oosthuyse B, Moons L, Storkebaum E, Beck H, Nuyens D, Brusselmans K, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001;28:131–138.

    Article  CAS  PubMed  Google Scholar 

  31. Tovar-Y-Romo LB, Tapia R. VEGF protects spinal motor neurons against chronic excitotoxic degeneration in vivo by activation of PI3-K pathway and inhibition of p38MAPK. J Neurochem 2010;115:1090–1101.

    Article  CAS  PubMed  Google Scholar 

  32. Choi JS, Kim HY, Cha JH, Choi JY, Chun MH, Lee MY. Upregulation of vascular endothelial growth factor receptors Flt-1 and Flk-1 in rat hippocampus after transient forebrain ischemia. J Neurotrauma 2007;24:521–531.

    Article  PubMed  Google Scholar 

  33. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 1998;95:9349–9354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994;269:25646–25654.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Sook Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HW., Jeon, HJ. & Chang, MS. Vascular endothelial growth factor enhances axonal outgrowth in organotypic spinal cord slices via vascular endothelial growth factor receptor 1 and 2. Tissue Eng Regen Med 13, 601–609 (2016). https://doi.org/10.1007/s13770-016-0051-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0051-9

Key Words

Navigation