Skip to main content
Log in

Reduced Expression of YAP in Dermal Fibroblasts is Associated with Impaired Wound Healing in Type 2 Diabetic Mice

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Dermal fibroblasts play essential roles in wound healing and their dysfunction has been shown to be associated with impaired wound healing in diabetes. In the present study, we aimed at investigating whether Yes-associated protein (YAP), a mediator of mechanotransduction in dermal fibroblasts, is associated with impaired wound healing in diabetic mice. Compared with that in the control, the rate of wound contraction was decreased twofold in db/db type 2 diabetic mice (db/db mice). To mimic diabetic pathological condition, dermal fibroblasts were cultured under high glucose conditions (25.5 mM glucose). Further, dermal fibroblast-mediated contraction of wound was evaluated by in vitro collagen gel contraction assay. Dermal fibroblasts cultured under hyperglycemic condition showed impaired gel contraction and mitochondrial dysfunction, compared to the cells cultured under normoglycemic conditions (5.5 mM glucose). Importantly, compared with the normal dermal fibroblasts, diabetic db/db dermal fibroblasts expressed lower levels of growth factors and cytokines that enhance wound healing, such as insulin-like growth factor-1, stromal cell-derived factor-1, connective tissue growth factor, and transforming growth factor-β (TGF-β). The quantity of YAP mRNA was also lower in diabetic db/db dermal fibroblasts, compared with that in the control fibroblasts. These results indicate that impaired wound healing in diabetics is associated with the dysfunction of dermal fibroblasts, including downregulation of YAP, which plays essential roles in extracellular matrix remodeling and TGF-β-mediated wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci. 2009;122(Pt 18):3209–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Levinson H. A paradigm of fibroblast activation and dermal wound contraction to guide the development of therapies for chronic wounds and pathologic scars. Adv Wound Care. 2013;2(4):149–59.

    Article  Google Scholar 

  3. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006;23(6):594–608.

    Article  PubMed  CAS  Google Scholar 

  4. Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. J Clin Invest. 2007;117(5):1219–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nolte SV, Xu W, Rennekampff HO, Rodemann HP. Diversity of fibroblasts—a review on implications for skin tissue engineering. Cells Tissues Organs. 2008;187(3):165–76.

    Article  PubMed  Google Scholar 

  6. Thangapazham RL, Darling TN, Meyerle J. Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci. 2014;15(5):8407–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Roh SS, et al. Stimulation of the extracellular matrix production in dermal fibroblasts by velvet antler extract. Ann Dermatol. 2010;22(2):173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Quan C, et al. Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein Cell. 2015;6(12):890–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem. 1986;261(9):4337–45.

    PubMed  CAS  Google Scholar 

  10. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J. 2004;18(7):816–27.

    Article  PubMed  CAS  Google Scholar 

  11. Fuentes-Calvo I, et al. H-Ras isoform modulates extracellular matrix synthesis, proliferation, and migration in fibroblasts. Am J Physiol Cell Physiol. 2012;302(4):C686–97.

    Article  PubMed  CAS  Google Scholar 

  12. Poon R, Nik SA, Ahn J, Slade L, Alman BA. Beta-catenin and transforming growth factor beta have distinct roles regulating fibroblast cell motility and the induction of collagen lattice contraction. BMC Cell Biol. 2009;10:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee MJ, Ran Byun M, Furutani-Seiki M, Hong JH, Jung HS. YAP and TAZ regulate skin wound healing. J Invest Dermatol. 2014;134(2):518–25.

    Article  PubMed  CAS  Google Scholar 

  14. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25(9):499–513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27(4):355–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163(4):811–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Calvo F, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15(6):637–46.

    Article  PubMed  CAS  Google Scholar 

  18. Zhao B, et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 2008;22(14):1962–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346(6205):1248012.

    Article  PubMed  CAS  Google Scholar 

  20. Azzolin L, et al. YAP/TAZ incorporation in the beta-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158(1):157–70.

    Article  PubMed  CAS  Google Scholar 

  21. Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

    Article  PubMed  CAS  Google Scholar 

  22. Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-beta family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2(1):18–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Um J, et al. Substance P enhances EPC mobilization for accelerated wound healing. Wound Repair Regen. 2016;24(2):402–10.

    Article  PubMed  Google Scholar 

  24. Wetzler C, Kampfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J Invest Dermatol. 2000;115(2):245–53.

    Article  PubMed  CAS  Google Scholar 

  25. Goodson WH III, Hunt TK. Wound healing and the diabetic patient. Surg Gynecol Obstet. 1979;149(4):600–8.

    PubMed  Google Scholar 

  26. Coleman DL. Diabetes-obesity syndromes in mice. Diabetes. 1982;31(Suppl 1 Pt 2):1–6.

    Article  PubMed  CAS  Google Scholar 

  27. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307(5708):384–7.

    Article  PubMed  CAS  Google Scholar 

  28. Szendroedi J, Phielix E, Roden M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8(2):92–103.

    Article  CAS  Google Scholar 

  29. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  PubMed  CAS  Google Scholar 

  30. Lerman OZ, Galiano RD, Armour M, Levine JP, Gurtner GC. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia. Am J Pathol. 2003;162(1):303–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yang DJ et al. Gallic acid promotes wound healing in normal and hyperglucidic conditions. Molecules. 2016; 21(7).

  32. Li J, Chen J, Kirsner R. Pathophysiology of acute wound healing. Clin Dermatol. 2007;25(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  33. Kubiczkova L, Sedlarikova L, Hajek R, Sevcikova S. TGF-beta—an excellent servant but a bad master. J Transl Med. 2012;10:183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Roberts AB, et al. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA. 1986;83(12):4167–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Clark RA, McCoy GA, Folkvord JM, McPherson JM. TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol. 1997;170(1):69–80.

    Article  PubMed  CAS  Google Scholar 

  36. Pastar I, et al. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Mol Med. 2010;16(3–4):92–101.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Kim BC, et al. Fibroblasts from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta Type II receptor expression. J Cell Physiol. 2003;195(3):331–6.

    Article  PubMed  CAS  Google Scholar 

  38. Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.

    Article  PubMed  CAS  Google Scholar 

  39. Shimo T, et al. Connective tissue growth factor induces the proliferation, migration, and tube formation of vascular endothelial cells in vitro, and angiogenesis in vivo. J Biochem. 1999;126(1):137–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A1A09057839), the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (HI13C1479), and a grant from Kyung Hee University in 2016 (KHU-20160701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Sook Park.

Ethics declarations

Conflict of interest

All of the authors of this manuscript declare that they have no conflict of interest.

Ethical statement

All animal experiments were performed in compliance with protocols approved by the Institutional Animal Care and Use of Kyung Hee University (KHMC-IACUC 15-020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Choi, S., Um, J. et al. Reduced Expression of YAP in Dermal Fibroblasts is Associated with Impaired Wound Healing in Type 2 Diabetic Mice. Tissue Eng Regen Med 14, 49–55 (2017). https://doi.org/10.1007/s13770-016-0019-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0019-9

Keywords

Navigation