Skip to main content
Log in

Effects of block bone substitutes loaded with Escherichia Coli-produced recombinant human bone morphogenetic protein-2 on space maintenance and bone formation in rat calvarial onlay model

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

We aimed to evaluate the effects of onlay-type grafted human freeze-dried corticocancellous bone block (FDBB) and deproteinized bovine bone with collagen (DBBC) loaded with Escherichia coli-produced recombinant human bone morphogenetic protein-2 (ErhBMP-2) on space maintenance and new bone formation in rat calvaria. Collagen sponge (CS), FDBB, or DBBC disks (8×4 mm) with ErhBMP-2 (2.5 μg) were implanted onto the calvaria of male Sprague-Dawley rats, whereas CS with buffer was implanted onto the calvaria as controls (n=20/carrier). Rats were killed at 2 or 8 weeks post-surgery for histologic and histomorphometric analyses; total augmented area, new bone area, and bone density were evaluated. At both time-points, all ErhBMP-2 groups showed significantly higher new bone area and bone density than the control group (p<0.05). ErhBMP-2/FDBB and ErhBMP-2/DBBC groups showed significantly higher total augmented area than ErhBMP-2/CS group (8 weeks), and ErhBMP-2/FDBB group showed significantly higher new bone area and bone density than ErhBMP-2/DBBC group (p<0.05). ErhBMP-2/CS group showed the highest bone density (p<0.05). Combining ErhBMP-2 with FDBB or DBBC could significantly improve onlay graft outcomes, by new bone formation and bone density increase. Moreover, onlay-grafted FDBB and DBBC with ErhBMP-2 could be an alternative to autogenous block onlay bone graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. The efficacy of horizontal and vertical bone augmentation procedures for dental implants -a Cochrane systematic review. Eur J Oral Implantol 2009;2:167–184.

    PubMed  Google Scholar 

  2. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 2004;25:987–994.

    Article  CAS  PubMed  Google Scholar 

  3. Chesmel KD, Branger J, Wertheim H, Scarborough N. Healing response to various forms of human demineralized bone matrix in athymic rat cranial defects. J Oral Maxillofac Surg 1998;56:857–863. discussion 864-865.

    Article  CAS  PubMed  Google Scholar 

  4. Mellonig JT. Histologic and clinical evaluation of an allogeneic bone matrix for the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 2006;26:561–569.

    PubMed  Google Scholar 

  5. Hämmerle CH, Chiantella GC, Karring T, Lang NP. The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Implants Res 1998;9:151–162.

    Article  PubMed  Google Scholar 

  6. Friedlaender GE, Strong DM, Sell KW. Studies on the antigenicity of bone. I. Freeze-dried and deep-frozen bone allografts in rabbits. J Bone Joint Surg Am 1976;58:854–858.

    CAS  PubMed  Google Scholar 

  7. Sheikh Z, Sima C, Glogauer M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials 2015;8:2953–2993.

    Article  Google Scholar 

  8. Peleg M, Sawatari Y, Marx RN, Santoro J, Cohen J, Bejarano P, et al. Use of corticocancellous allogeneic bone blocks for augmentation of alveolar bone defects. Int J Oral Maxillofac Implants 2010;25:153–162.

    PubMed  Google Scholar 

  9. Leonetti JA, Koup R. Localized maxillary ridge augmentation with a block allograft for dental implant placement: case reports. Implant Dent 2003;12:217–226.

    Article  PubMed  Google Scholar 

  10. Keith JD Jr. Localized ridge augmentation with a block allograft followed by secondary implant placement: a case report. Int J Periodontics Restorative Dent 2004;24:11–17.

    PubMed  Google Scholar 

  11. Morelli T, Neiva R, Wang HL. Human histology of allogeneic block grafts for alveolar ridge augmentation: case report. Int J Periodontics Restorative Dent 2009;29:649–656.

    PubMed  Google Scholar 

  12. Chung H, Hong JY, Jung GU, Pang EK. The effect of human freeze dried corticocancellous block onlay graft on bone formation in rat calvarium. Tissue Eng Regen Med 2015;12:113–120.

    Article  CAS  Google Scholar 

  13. Alayan J, Vaquette C, Farah C, Ivanovski S. A histomorphometric assess ment of collagen-stabilized anorganic bovine bone mineral in maxillary sinus augmentation -a prospective clinical trial. Clin Oral Implants Res 2015 Sep 16 [Epub ahead of print]. doi: 10.1111/clr.12694.

    Google Scholar 

  14. Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog. Clin Oral Implants Res 1997;8:117–124.

    Article  CAS  PubMed  Google Scholar 

  15. Daculsi G, Passuti N. Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 1990;11:86–7.

    CAS  PubMed  Google Scholar 

  16. Araújo MG, Lindhe J. Ridge preservation with the use of Bio-Oss collagen: a 6-month study in the dog. Clin Oral Implants Res 2009;20:433–440.

    Article  PubMed  Google Scholar 

  17. Jung GU, Hong SJ, Hong JY, Pang EK. Histomorphometric evaluation of onlay freeze-dried block bone and deproteinized bovine bone with collagen in rat. Tissue Eng Regen Med 2016;13:70–77.

    Article  CAS  Google Scholar 

  18. Jang JW, Yun JH, Lee KI, Jang JW, Jung UW, Kim CS, et al. Osteoinductive activity of biphasic calcium phosphate with different rhBMP-2 doses in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2012;113:480–487.

    Article  PubMed  Google Scholar 

  19. Hughes FJ, Collyer J, Stanfield M, Goodman SA. The effects of bone morphogenetic protein-2, -4, and -6 on differentiation of rat osteoblast cells in vitro. Endocrinology 1995;136:2671–2677.

    CAS  PubMed  Google Scholar 

  20. Hyun SJ, Han DK, Choi SH, Chai JK, Cho KS, Kim CK, et al. Effect of recombinant human bone morphogenetic protein-2, -4, and -7 on bone formation in rat calvarial defects. J Periodontol 2005;76:1667–1674.

    Article  CAS  PubMed  Google Scholar 

  21. Kim CS, Kim JI, Kim J, Choi SH, Chai JK, Kim CK, et al. Ectopic bone formation associated with recombinant human bone morphogenetic proteins-2 using absorbable collagen sponge and beta tricalcium phosphate as carriers. Biomaterials 2005;26:2501–2507.

    Article  CAS  PubMed  Google Scholar 

  22. Miranda DA, Blumenthal NM, Sorensen RG, Wozney JM, Wikesjö UM. Evaluation of recombinant human bone morphogenetic protein-2 on the repair of alveolar ridge defects in baboons. J Periodontol 2005;76:210–220.

    Article  CAS  PubMed  Google Scholar 

  23. Israel DI, Nove J, Kerns KM, Moutsatsos IK, Kaufman RJ. Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells. Growth Factors 1992;7:139–150.

    Article  CAS  PubMed  Google Scholar 

  24. Vallejo LF, Brokelmann M, Marten S, Trappe S, Cabrera-Crespo J, Hoffmann A, et al. Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli. J Biotechnol 2002;94:185–194.

    Article  CAS  PubMed  Google Scholar 

  25. Bessho K, Konishi Y, Kaihara S, Fujimura K, Okubo Y, Iizuka T. Bone induction by Escherichia coli -derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2000;38:645–649.

    Article  CAS  PubMed  Google Scholar 

  26. Long S, Truong L, Bennett K, Phillips A, Wong-Staal F, Ma H. Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli. Protein Expr Purif 2006;46:374–378.

    Article  CAS  PubMed  Google Scholar 

  27. Triplett RG, Nevins M, Marx RE, Spagnoli DB, Oates TW, Moy PK, et al. Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation. J Oral Maxillofac Surg 2009;67:1947–1960.

    Article  PubMed  Google Scholar 

  28. Lu SX, Fiorini T, Lee J, Prasad HS, Buxton AN, Bisch FC, et al. Evaluation of a compression resistant matrix for recombinant human bone morphogenetic protein-2. J Clin Periodontol 2013;40:688–697.

    Article  CAS  PubMed  Google Scholar 

  29. Choi Y, Yun JH, Kim CS, Choi SH, Chai JK, Jung UW. Sinus augmentation using absorbable collagen sponge loaded with Escherichia coli-expressed recombinant human bone morphogenetic protein 2 in a standardized rabbit sinus model: a radiographic and histologic analysis. Clin Oral Implants Res 2012;23:682–689.

    Article  PubMed  Google Scholar 

  30. Fujita R, Yokoyama A, Kawasaki T, Kohgo T. Bone augmentation osteogenesis using hydroxyapatite and beta-tricalcium phosphate blocks. J Oral Maxillofac Surg 2003;61:1045–1053.

    Article  PubMed  Google Scholar 

  31. Lee JH, Kim CS, Choi KH, Jung UW, Yun JH, Choi SH, et al. The induction of bone formation in rat calvarial defects and subcutaneous tissues by recombinant human BMP-2, produced in Escherichia coli. Biomaterials 2010;31:3512–3519.

    Article  CAS  PubMed  Google Scholar 

  32. Kübler NR, Reuther JF, Faller G, Kirchner T, Ruppert R, Sebald W. Inductive properties of recombinant human BMP-2 produced in a bacterial expression system. Int J Oral Maxillofac Surg 1998;27:305–309.

    Article  PubMed  Google Scholar 

  33. Pang EK, Im SU, Kim CS, Choi SH, Chai JK, Kim CK, et al. Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model. J Periodontol 2004;75:1364–1370.

    Article  CAS  PubMed  Google Scholar 

  34. Wikesjö UM, Guglielmoni P, Promsudthi A, Cho KS, Trombelli L, Selvig KA, et al. Periodontal repair in dogs: effect of rhBMP-2 concentration on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol 1999;26:392–400.

    Article  PubMed  Google Scholar 

  35. Tatakis DN, Koh A, Jin L, Wozney JM, Rohrer MD, Wikesjö UM. Peri-implant bone regeneration using recombinant human bone morphogenetic protein-2 in a canine model: a dose-response study. J Periodontal Res 2002;37:93–100.

    Article  CAS  PubMed  Google Scholar 

  36. Kenley R, Marden L, Turek T, Jin L, Ron E, Hollinger JO. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2 (rhBMP-2). J Biomed Mater Res 1994;28:1139–1147.

    Article  CAS  PubMed  Google Scholar 

  37. Boyce T, Edwards J, Scarborough N. Allograft bone. The influence of processing on safety and performance. Orthop Clin North Am 1999;30: 571–581.

    Article  CAS  PubMed  Google Scholar 

  38. Rummelhart JM, Mellonig JT, Gray JL, Towle HJ. A comparison of freeze-dried bone allograft and demineralized freeze-dried bone allograft in human periodontal osseous defects. J Periodontol 1989;60:655–663.

    Article  CAS  PubMed  Google Scholar 

  39. Ozaki W, Buchman SR. Volume maintenance of onlay bone grafts in the craniofacial skeleton: micro-architecture versus embryologic origin. Plast Reconstr Surg 1998;102:291–299.

    Article  CAS  PubMed  Google Scholar 

  40. Ozaki W, Buchman SR, Goldstein SA, Fyhrie DP. A comparative analysis of the microarchitecture of cortical membranous and cortical endochondral onlay bone grafts in the craniofacial skeleton. Plast Reconstr Surg 1999;104:139–147.

    Article  CAS  PubMed  Google Scholar 

  41. Wikesjö UM, Huang YH, Polimeni G, Qahash M. Bone morphogenetic proteins: a realistic alternative to bone grafting for alveolar reconstruction. Oral Maxillofac Surg Clin North Am 2007;19:535–551. vi-vii.

    Article  PubMed  Google Scholar 

  42. Thoma DS, Jones A, Yamashita M, Edmunds R, Nevins M, Cochran DL. Ridge augmentation using recombinant bone morphogenetic protein-2 techniques: an experimental study in the canine. J Periodontol 2010;81: 1829–1838.

    Article  CAS  PubMed  Google Scholar 

  43. Yang CR, Wang YJ, Chen XF, Zhao NR. Biomimetic fabrication of BCP/COL/HCA scaffolds for bone tissue engineering. Mater Lett 2005;59: 3635–3640.

    Article  CAS  Google Scholar 

  44. Lynch SE. 18. Bone regeneration techniques in the orofacial region. Lieberman Jr Friedlaender GE, editors. Bone Regeneration and Repair: Biology and Clinical Applications. Totowa, NJ: Humana Press Inc.; 2015. p. 359–390.

    Google Scholar 

  45. Barboza EP, Duarte ME, Geolás L, Sorensen RG, Riedel GE, Wikesjö UM. Ridge augmentation following implantation of recombinant human bone morphogenetic protein-2 in the dog. J Periodontol 2000;71: 488–496.

    Article  CAS  PubMed  Google Scholar 

  46. Sigurdsson TJ, Nygaard L, Tatakis DN, Fu E, Turek TJ, Jin L, et al. Periodontal repair in dogs: evaluation of rhBMP-2 carriers. Int J Periodontics Restorative Dent 1996;16:524–537.

    CAS  PubMed  Google Scholar 

  47. Choi SH, Kim CK, Cho KS, Huh JS, Sorensen RG, Wozney JM, et al. Effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J Periodontol 2002;73:63–72.

    Article  CAS  PubMed  Google Scholar 

  48. Jung UW, Choi SY, Pang EK, Kim CS, Choi SH, Cho KS. The effect of varying the particle size of beta tricalcium phosphate carrier of recombinant human bone morphogenetic protein-4 on bone formation in rat calvarial defects. J Periodontol 2006;77:765–772.

    Article  CAS  PubMed  Google Scholar 

  49. Jung JH, Yun JH, Um YJ, Jung UW, Kim CS, Choi SH, et al. Bone forma tion of Escherichia coli expressed rhBMP-2 on absorbable collagen block in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:298–305.

    Article  PubMed  Google Scholar 

  50. Hsu EL, Ghodasra JH, Ashtekar A, Nickoli MS, Lee SS, Stupp SI, et al. A comparative evaluation of factors influencing osteoinductivity among scaffolds designed for bone regeneration. Tissue Eng Part A 2013;19:1764–1772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Kyoung Pang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JS., Jung, GU. & Pang, EK. Effects of block bone substitutes loaded with Escherichia Coli-produced recombinant human bone morphogenetic protein-2 on space maintenance and bone formation in rat calvarial onlay model. Tissue Eng Regen Med 13, 311–321 (2016). https://doi.org/10.1007/s13770-016-0011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-016-0011-4

Keywords

Navigation