Skip to main content
Log in

Cardioprotective effects on ischemic myocardium induced by SVVYGLR peptide via its angiogenic-promoting activity

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

In ischemic heart disease, cardiomyocyte death results from both necrosis and apoptosis, and the area of infarction gradually increases. The induction of therapeutic angiogenesis is a promising therapy for this condition. In the present study, we investigated the actions of SV peptide—a 7-amino-acid sequence with angiogenic properties derived from osteopontin in the extracellular matrix—in a rat model of myocardial ischemia. We examined the angiogenesis activity of SV ex vivo using ring assay and dorsal air sac assay and in ischemic myocardium. We also conducted histological evaluations of left-ventricle remodeling and evaluated left ventricular (LV) function by echocardiography. The SV peptide had strong angiogenic effects both ex vivo and in vivo. In the experimental rats, this peptide stimulated the formation of new blood vessels in ischemic myocardium. Histological evaluation of the left ventricle in the SV-treated group showed a significant decrease in the size of the infarction, rate of myocardial fibrosis, and cardiomyocyte hypertrophy. Moreover, administration of the SV peptide significantly improved LV function. These results indicate that SV peptide induced angiogenesis in ischemic myocardium and improved cardiac function. Thus, it could serve as a potentially useful new therapy for ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki M, Morishita R, Taniyama Y, Kida I, Moriguchi A, Matsumoto K, et al. Angiogenesis induced by hepatocyte growth factor in non-infarcted myocardium and infarcted myocardium: up-regulation of essential transcription factor for angiogenesis, ets. Gene Ther 2000;7:417–427.

    Article  CAS  PubMed  Google Scholar 

  2. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999;100(19 Suppl):II247–II256.

    CAS  PubMed  Google Scholar 

  3. Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, et al. Cell sheet engineering: recreating tissues without biodegradable scaffolds. Biomaterials 2005;26:6415–6422.

    Article  CAS  PubMed  Google Scholar 

  4. Yoo KJ, Li RK, Weisel RD, Mickle DA, Li G, Yau TM. Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg 2000;70:859–865.

    Article  CAS  PubMed  Google Scholar 

  5. Jayasankar V, Woo YJ, Bish LT, Pirolli TJ, Chatterjee S, Berry MF, et al. Gene transfer of hepatocyte growth factor attenuates postinfarction heart failure. Circulation 2003;108 Suppl 1:II230–II236.

    PubMed  Google Scholar 

  6. Kunugiza Y, Tomita N, Taniyama Y, Tomita T, Osako MK, Tamai K, et al. Acceleration of wound healing by combined gene transfer of hepatocyte growth factor and prostacyclin synthase with Shima Jet. Gene Ther 2006; 13:1143–1152.

    Article  CAS  PubMed  Google Scholar 

  7. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27–31.

    Article  CAS  PubMed  Google Scholar 

  8. Haider HKh, Jiang S, Idris NM, Ashraf M. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 2008;103:1300–1308.

    Article  CAS  PubMed  Google Scholar 

  9. Iwanaga K, Takano H, Ohtsuka M, Hasegawa H, Zou Y, Qin Y, et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem Biophys Res Commun 2004;325:1353–1359.

    Article  CAS  PubMed  Google Scholar 

  10. Takano H, Qin Y, Hasegawa H, Ueda K, Niitsuma Y, Ohtsuka M, et al. Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. J Mol Med (Berl) 2006;84:185–193.

    Article  Google Scholar 

  11. Ghostine S, Carrion C, Souza LC, Richard P, Bruneval P, Vilquin JT, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 2002;106(12 Suppl 1): I131–I136.

    PubMed  Google Scholar 

  12. Chen XH, Minatoguchi S, Kosai K, Yuge K, Takahashi T, Arai M, et al. In vivo hepatocyte growth factor gene transfer reduces myocardial ischemia- reperfusion injury through its multiple actions. J Card Fail 2007;13: 874–883.

    Article  CAS  PubMed  Google Scholar 

  13. Li Y, Takemura G, Kosai K, Yuge K, Nagano S, Esaki M, et al. Postinfarction treatment with an adenoviral vector expressing hepatocyte growth factor relieves chronic left ventricular remodeling and dysfunction in mice. Circulation 2003;107:2499–2506.

    Article  CAS  PubMed  Google Scholar 

  14. Wai PY, Kuo PC. The role of Osteopontin in tumor metastasis. J Surg Res 2004;121:228–241.

    Article  CAS  PubMed  Google Scholar 

  15. Ruvinov E, Leor J, Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 2011;32: 565–578.

    Article  CAS  PubMed  Google Scholar 

  16. Taniyama Y, Morishita R, Aoki M, Hiraoka K, Yamasaki K, Hashiya N, et al. Angiogenesis and antifibrotic action by hepatocyte growth factor in cardiomyopathy. Pertension 2002;40:47–53.

    CAS  Google Scholar 

  17. Krishnamurthy P, Peterson JT, Subramanian V, Singh M, Singh K. Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Mol Cell Biochem 2009;322:53–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kim JH, Jung Y, Kim SH, Sun K, Choi J, Kim HC, et al. The enhancement of mature vessel formation and cardiac function in infarcted hearts using dual growth factor delivery with self-assembling peptides. Biomaterials 2011;32:6080–6088.

    CAS  PubMed  Google Scholar 

  19. Hamada Y, Nokihara K, Okazaki M, Fujitani W, Matsumoto T, Matsuo M, et al. Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochem Biophys Res Commun 2003;310:153–157.

    Article  CAS  PubMed  Google Scholar 

  20. Denhardt DT, Noda M, O’Regan AW, Pavlin D, Berman JS. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J Clin Invest 2001;107:1055- 1061.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Denhardt DT, Noda M. Osteopontin expression and function: role in bone remodeling. J Cell Biochem Suppl 1998;30–31:92–102.

    Article  PubMed  Google Scholar 

  22. Miyagawa S, Sawa Y, Fukuda K, Hisaka Y, Taketani S, Memon IA, et al. Angiogenic gene cell therapy using suicide gene system regulates the effect of angiogenesis in infarcted rat heart. Transplantation 2006;81:902–907.

    Article  CAS  PubMed  Google Scholar 

  23. Trueblood NA, Xie Z, Communal C, Sam F, Ngoy S, Liaw L, et al. Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circ Res 2001;88:1080–1087.

    Article  CAS  PubMed  Google Scholar 

  24. Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK. Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 2011;32:1280–1290.

    Article  CAS  PubMed  Google Scholar 

  25. Yokosaki Y, Matsuura N, Sasaki T, Murakami I, Schneider H, Higashiyama S, et al. The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. J Biol Chem 1999;274:36328–36334.

    Article  CAS  PubMed  Google Scholar 

  26. Yokosaki Y, Palmer EL, Prieto AL, Crossin KL, Bourdon MA, Pytela R, et al. The integrin alpha 9 beta 1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. J Biol Chem 1994;269:26691–26696.

    CAS  PubMed  Google Scholar 

  27. Yokosaki Y, Tanaka K, Higashikawa F, Yamashita K, Eboshida A. Distinct structural requirements for binding of the integrins alphavbeta6, alphavbeta3, alphavbeta5, alpha5beta1 and alpha9beta1 to osteopontin. Matrix Biol 2005;24:418–427.

    Article  CAS  PubMed  Google Scholar 

  28. Hamada Y, Yuki K, Okazaki M, Fujitani W, Matsumoto T, Hashida MK, et al. Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo. Dent Mater J 2004;23:650–655.

    Article  CAS  PubMed  Google Scholar 

  29. Mori S, Tran V, Nishikawa K, Kaneda T, Hamada Y, Kawaguchi N, et al. A dominant-negative FGF1 mutant (the R50E mutant) suppresses tumorigenesis and angiogenesis. PLoS One 2013;8:e57927.

    Article  Google Scholar 

  30. Beauvais DM, Ell BJ, McWhorter AR, Rapraeger AC. Syndecan-1 regulates alphavbeta3 and alphavbeta5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 2009; 206:691–705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Stupack DG, Cheresh DA. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002;115(Pt 19):3729–3738.

    Article  CAS  PubMed  Google Scholar 

  32. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000;407:249–257.

    Article  CAS  PubMed  Google Scholar 

  33. Uchinaka A, Kawaguchi N, Hamada Y, Mori S, Miyagawa S, Saito A, et al. Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovasc Res 2013; 99:102–110.

    Article  CAS  PubMed  Google Scholar 

  34. Ross RS. The extracellular connections: the role of integrins in myocardial remodeling. J Card Fail 2002;8(6 Suppl):S326–S331.

    Article  CAS  PubMed  Google Scholar 

  35. Mehrabi MR, Serbecic N, Tamaddon F, Huber K, Pacher R, Grimm M, et al. Revascularization of myocardial scar tissue following prostaglandin E1-therapy in patients with ischemic heart disease. Pathol Res Pract 2003; 199:129–136.

    Article  CAS  PubMed  Google Scholar 

  36. Ueda H, Nakamura T, Matsumoto K, Sawa Y, Matsuda H, Nakamura T. A potential cardioprotective role of hepatocyte growth factor in myocardial infarction in rats. Cardiovasc Res 2001;51:41–50.

    Article  CAS  PubMed  Google Scholar 

  37. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002;110:673–687.

    Article  CAS  PubMed  Google Scholar 

  38. Yokosaki Y, Matsuura N, Higashiyama S, Murakami I, Obara M, Yamakido M, et al. Identification of the ligand binding site for the integrin alpha9 beta1 in the third fibronectin type III repeat of tenascin-C. J Biol Chem 1998;273:11423–11428.

    Article  CAS  PubMed  Google Scholar 

  39. Ross RS, Borg TK. Integrins and the myocardium. Circ Res 2001;88:1112–1119.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomasa Kawaguchi.

Additional information

The first 2 authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchinaka, A., Hamada, Y., Mori, S. et al. Cardioprotective effects on ischemic myocardium induced by SVVYGLR peptide via its angiogenic-promoting activity. Tissue Eng Regen Med 12, 162–171 (2015). https://doi.org/10.1007/s13770-015-0087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-015-0087-2

Key Words

Navigation