Skip to main content

Advertisement

Log in

Sequential differentiation of human bone marrow stromal cells for bone regeneration

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

In this study we hypothesized that as a simulation of endochondral bone formation, bone marrow stromal cell (BMSC) provide a sequential chondro-osteogenic differentiation potential. A chondrogenic priming of BMSC leads to a spontaneous three-dimensional cell formation. BMSC were chondrogenically differentiated prior to an osteogenic stimulation. Duration of cell culture was 28 days, whereas in group A BMSC were chondrogenically differentiated for 1 day, followed by an osteogenic differentiation for 27 days. In group B BMSC were chondrogenically differentiated for 14 days prior to an osteogenic differentiation of 14 days and group C BMSC were differentiated chondrogenically for 28 days serving as a chondrogenic control group. Chondrogenic priming induced a spontaneous three-dimensional cell formation. To survey the stability of the osteogenic phenotype in the absence of an osteogenic stimulus, investigations were performed in vivo in a specially adapted chorioallantoic membrane model of fertilized White Leghorn eggs. Histology and real time polymerase chain reaction revealed a higher amount of osteogenic extracellular matrix synthesis and significant higher expressions of osteogenic marker genes in group B after 14 days of chondrogenic and 14 days of osteogenic stimulation. Matrix calcification in vivo in the absence of an osteogenic stimulus could be demonstrated. The results of the present study support the theory of a sequential differentiation potential of BMSC. A chondrogenic priming of BMSC stimulated into the osteogenic lineage result in a stable osteogenic phenotype in a scaffold-free, three-dimensional tissue engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000;(371):10–27.

    Article  PubMed  Google Scholar 

  2. Conrad EU, Gretch DR, Obermeyer KR, Moogk MS, Sayers M, Wilson JJ, et al. Transmission of the hepatitis-C virus by tissue transplantation. J Bone Joint Surg Am 1995;77:214–224.

    CAS  PubMed  Google Scholar 

  3. Li CM, Ho YR, Liu YC. Transmission of human immunodeficiency virus through bone transplantation: a case report. J Formos Med Assoc 2001;100:350–351.

    CAS  PubMed  Google Scholar 

  4. Hallfeldt KK, Stützle H, Puhlmann M, Kessler S, Schweiberer L. Sterilization of partially demineralized bone matrix: the effects of different sterilization techniques on osteogenetic properties. J Surg Res 1995; 59:614–620.

    Article  CAS  PubMed  Google Scholar 

  5. Knaepler H, Haas H, Püschel HU. [Biomechanical properties of heat and irradiation treated spongiosa]. Unfallchirurgie 1991;17:194–199.

    Article  CAS  PubMed  Google Scholar 

  6. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976) 1995; 20:1055–1060.

    Article  CAS  Google Scholar 

  7. Kasten P, Vogel J, Beyen I, Weiss S, Niemeyer P, Leo A, et al. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference. J Biomater Appl 2008;23:169–188.

    Article  CAS  PubMed  Google Scholar 

  8. Kasten P, Beyen I, Niemeyer P, Luginbühl R, Bohner M, Richter W. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 2008;4:1904–1915.

    Article  CAS  PubMed  Google Scholar 

  9. Niemeyer P, Szalay K, Luginbühl R, Südkamp NP, Kasten P. Transplantation of human mesenchymal stem cells in a non-autogenous setting for bone regeneration in a rabbit critical-size defect model. Acta Biomater 2010;6:900–908.

    Article  CAS  PubMed  Google Scholar 

  10. Ashton BA, Allen TD, Howlett CR, Eaglesom CC, Hattori A, Owen M. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res 1980;(151):294–307.

    PubMed  Google Scholar 

  11. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968;6:230–247.

    Article  CAS  PubMed  Google Scholar 

  12. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 1998;238:265–272.

    Article  CAS  PubMed  Google Scholar 

  13. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295–312.

    Article  CAS  PubMed  Google Scholar 

  14. Galotto M, Campanile G, Robino G, Cancedda FD, Bianco P, Cancedda R. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res 1994;9:1239–1249.

    Article  CAS  PubMed  Google Scholar 

  15. Steffens L, Wenger A, Stark GB, Finkenzeller G. In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med 2009;13:3380–3386.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Rizzo V, DeFouw DO. Macromolecular selectivity of chick chorioallantoic membrane microvessels during normal angiogenesis and endothelial differentiation. Tissue Cell 1993;25:847–856.

    Article  CAS  PubMed  Google Scholar 

  17. Rosenbruch M. [Early stages of the incubated chicken egg as a model in experimental biology and medicine]. ALTEX 1994;11:199–206.

    PubMed  Google Scholar 

  18. Borges J, Tegtmeier FT, Padron NT, Mueller MC, Lang EM, Stark GB. Chorioallantoic membrane angiogenesis model for tissue engineering: a new twist on a classic model. Tissue Eng 2003;9:441–450.

    Article  CAS  PubMed  Google Scholar 

  19. Niemeyer P, Krause U, Fellenberg J, Kasten P, Seckinger A, Ho AD, et al. Evaluation of mineralized collagen and alpha-tricalcium phosphate as scaffolds for tissue engineering of bone using human mesenchymal stem cells. Cells Tissues Organs 2004;177:68–78.

    Article  CAS  PubMed  Google Scholar 

  20. Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000;113(Pt 7):1161–1166.

    CAS  PubMed  Google Scholar 

  21. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 1997;12:1335–1347.

    Article  CAS  PubMed  Google Scholar 

  22. Fankhauser F, Schippinger G, Weber K, Heinz S, Quehenberger F, Boldin C, et al. Cadaveric-biomechanical evaluation of bone-implant construct of proximal humerus fractures (Neer type 3). J Trauma 2003;55:345–349.

    Article  PubMed  Google Scholar 

  23. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–317.

    Article  CAS  PubMed  Google Scholar 

  24. Stahl A, Wenger A, Weber H, Stark GB, Augustin HG, Finkenzeller G. Bi-directional cell contact-dependent regulation of gene expression between endothelial cells and osteoblasts in a three-dimensional spheroidal coculture model. Biochem Biophys Res Commun 2004;322:684–692.

    Article  CAS  PubMed  Google Scholar 

  25. Satomura K, Krebsbach P, Bianco P, Gehron Robey P. Osteogenic imprinting upstream of marrow stromal cell differentiation. J Cell Biochem 2000;78:391–403.

    Article  CAS  PubMed  Google Scholar 

  26. Adams JC, Watt FM. Regulation of development and differentiation by the extracellular matrix. Development 1993;117:1183–1198.

    CAS  PubMed  Google Scholar 

  27. Krieg T, LeRoy EC. Diseases of the extracellular matrix. J Mol Med (Berl) 1998;76:224–225.

    Article  CAS  Google Scholar 

  28. Farrell E, van der Jagt OP, Koevoet W, Kops N, van Manen CJ, Hellingman CA, et al. Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng Part C Methods 2009;15:285–295.

    Article  CAS  PubMed  Google Scholar 

  29. Niemeyer P, Kasten P, Simank HG, Fellenberg J, Seckinger A, Kreuz PC, et al. Transplantation of mesenchymal stromal cells on mineralized collagen leads to ectopic matrix synthesis in vivo independently from prior in vitro differentiation. Cytotherapy 2006;8:354–366.

    Article  CAS  PubMed  Google Scholar 

  30. Kuznetsov SA, Mankani MH, Robey PG. Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation. Transplantation 2000;70:1780–1787.

    Article  CAS  PubMed  Google Scholar 

  31. Pfander D, Gelse K. Hypoxia and osteoarthritis: how chondrocytes survive hypoxic environments. Curr Opin Rheumatol 2007;19:457–462.

    Article  CAS  PubMed  Google Scholar 

  32. Wang W, Xu J, Kirsch T. Annexin-mediated Ca2+ influx regulates growth plate chondrocyte maturation and apoptosis. J Biol Chem 2003;278:3762–3769.

    Article  CAS  PubMed  Google Scholar 

  33. Muraglia A, Corsi A, Riminucci M, Mastrogiacomo M, Cancedda R, Bianco P, et al. Formation of a chondro-osseous rudiment in micromass cultures of human bone-marrow stromal cells. J Cell Sci 2003;116(Pt 14):2949–2955.

    Article  CAS  PubMed  Google Scholar 

  34. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, et al. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum 2006;54:3254–3266.

    Article  CAS  PubMed  Google Scholar 

  35. Jukes JM, Both SK, Leusink A, Sterk LM, van Blitterswijk CA, de Boer J. Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci U S A 2008;105:6840–6845.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Johanna Huebner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huebner, E.J., Padron, N.T., Kubosch, D. et al. Sequential differentiation of human bone marrow stromal cells for bone regeneration. Tissue Eng Regen Med 12, 331–342 (2015). https://doi.org/10.1007/s13770-014-9945-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-9945-6

Keywords

Navigation