Skip to main content
Log in

Effect of cultured medium of human umbilical cord blood-derived mesenchymal stem cells on melanogenic enzyme activity in mouse B16 melanoma cells

  • Original Article
  • Regenerative Medicine
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The cultured medium of mesenchymal stem cell is a valuable resource for a variety of stem cell-derived cytokines and growth factors with a potential therapeutic effect on skin diseases. Here, we investigated the effect of the cultured medium of human umbilical cord blood-derived mesenchymal stem cell (CM-hCBSC) on melanogenesis in mouse B16 melanoma cells stimulated by α-melanocyte stimulating hormone (α-MSH). Our results show that CM-hCBSC inhibits melanin synthesis due to the decrease in cellular tyrosinase activity in B16 melanoma cells without cytotoxicity. The activity of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and TRP-2 were evaluated by western blot and semi-quantitative RT-PCR. The CM-hCBSC down-regulated the protein and mRNA expression levels of tyrosinase and TRP-1 in a dose-dependent manner. In addition, TRP-2 protein and mRNA expression levels were found to be down-regulated to a lesser extent. We also measured the level of cytokines in CM-hCBSC using the Luminex total system. It was found that the top enriched cytokine in the CMhCBSC was interukine-6 (IL-6), known as a potent regulator of melanin synthesis together with IL-1α and tumor necrosis factor α (TNF- α). These results indicate that secretary factors including IL-6 in the CM-hCBSC may inhibit melanin synthesis by down-regulating the expression of tyrosinase and TRP1. This study suggests that CMhCBSC has a therapeutic effect as an anti-melanogenic agent and may be effective against hyperpigmentation disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. M Brenner, VJ Hearing, The protective role of melanin against UV damage in human skin, Photochem Photobiol., 84, 539 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. GE Costin, VJ Hearing, Human skin pigmentation: melanocytes modulate skin color in response to stress, The FASEB Journal, 21, 976 (2007).

    Article  CAS  Google Scholar 

  3. VJ Hearing, Biogenesis of pigment granules: a sensitive way to regulate melanocyte function, J. dematol. Sci., 37, 3 (2005).

    Article  CAS  Google Scholar 

  4. TS Chang, An Updated Review of Tyrosinase Inhibitors, J. Mol. Sci., 10, 2440 (2009).

    Article  CAS  Google Scholar 

  5. ML Lamoreux, BK Zhou, S Rosemblat, SJ Orlow, The pinkeyed-dilution protein and the eumelanin/pheomelanin switch: in support of a unifying hypothesis, Pigment Cell Res., 8, 263 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. S Ito, K Wakamatsu, Quantitative Analysis of Eumelanin and Pheomelanin in Humans, Mice, and Other Animals: a Comparative Review, Pigment Cell Res., 16, 523 (2003).

    Article  PubMed  Google Scholar 

  7. T Kobayashi, K Urabe, A Winder, C Jimenez-Cervantes, G Imokawa, T Brewington, F Solano, JC Garcia Borron, VJ Hearing, Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis, EMBO J, 13, 5818 (1994).

    PubMed  CAS  PubMed Central  Google Scholar 

  8. K Mareschi, I Ferrero, D Rustichelli, S Aschero, L Gammaitoni, M Aglietta, E Madon, F Fagioli, Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow, J. Cell Biochem., 97, 744 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. MF Pittenger, AM Mackay, SC Beck, RK Jaiswal, R Douglas, JD Mosca, MA Moorman, DW Simonetti, S Craig, DR Marshak, Multilineage potential of adult human mesenchymal stem cells, Science, 284, 143 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. PA Zuk, M Zhu, H Mizuno, J Huang, JW Futrell, AJ Katz, P Benhaim, HP Lorenz, MH Hedrick, Multilineage cells from human adipose tissue: implications for cell-based therapies, Tissue Eng., 7, 211 (2001).

    Article  PubMed  CAS  Google Scholar 

  11. K Bieback, S Kern, H Kluter, H Eichler, Critical Parameters for the Isolation of Mesenchymal Stem Cells from Umbilical Cord Blood, Stem Cells., 22, 625 (2004).

    Article  PubMed  Google Scholar 

  12. YA Romanov, VA Svintsitskaya, VN Smirnov, Searching for Alternative Sources of Postnatal Human Mesenchymal Stem Cells: Candidate MSC-Like Cells from Umbilical Cord, Stem Cells, 21, 105 (2003).

    Article  PubMed  Google Scholar 

  13. G Kogler, S Sensken, JA Airey, T Trapp, M Muschen, N Feldhahn, S Liedtke, RV Sorg, J Fischer, C Rosenbaum, S Greschat, A Knipper, J Bender, O Degistirici, J Gao, AI Caplan, EJ Colletti, G Almeida-Porada, HW Muller, E Zanjani, P Wernet, A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential, J. Exp. Med., 200, 123 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  14. SA Kuznetsov, MH Mankani, S Gronthos, K Satomura, P Bianco, PG Robey, Circulating skeletal stem cells, J. Cell Biol., 153, 1133 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Y Jiang, B Vaessen, T Lenvik, M Blackstad, M Reyes, CM Verfaillie, Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain, Exp. Hematol., 30, 896 (2002).

    Article  PubMed  CAS  Google Scholar 

  16. EJ Gang, JA Jeong, SH Hong, SH Hwang, SW Kim, IH Yang, C Ahn, H Han, H Kim, Skeletal Myogenic Differentiation of Mesenchymal Stem Cells Isolated from Human Umbilical Cord Blood, Stem Cells, 22, 617 (2004).

    Article  PubMed  Google Scholar 

  17. CH Liu, SM Hwang, Cytokine interactions in mesenchymal stem cells from cord blood, Cytokine, 32, 270–279 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. G Imokawa, Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders, Pigment Cell Res., 17, 96 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. VB Swope, Z Abdel-Malek, LM Kassem, JJ Nordlund, Interleukins 1 alpha and 6 and tumor necrosis factor-alpha are paracrine inhibitors of human melanocyte proliferation and melanogenesis, J. Invest. Dermatol., 96, 180 (1991).

    Article  PubMed  CAS  Google Scholar 

  20. AK Kamaraju, C Bertolotto, J Chebath, M Revel, Pax3 downregulation and shut-off of melanogenesis in melanoma B16/ F10.9 by interleukin-6 receptor signaling, J. Biol. Chem., 277, 15132 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. A Kock, E Schauer, TA Luger, The human melanocyte as an immunocompetent epidermal cell: production of immunomodulating cytokines, Arch. Derm. Res., 283, 56 (1991).

    Google Scholar 

  22. H Choi, S Ahn, BG Lee, I Chang, JS Hwang, Inhibition of skin pigmentation by an extract of Lepidium apetalum and its possible implication in IL-6 mediated signaling, Pigment Cell Res., 18, 439 (2005).

    PubMed  CAS  Google Scholar 

  23. A Flynn, F Barry, T O’Brien, UC blood-derived mesenchymal stromal cells: an overview, Cytotherapy, 9, 717 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. M Secco, E Zucconi, NM Vieira, LL Fogaca, A Cerqueira, MD Carvalho, T Jazedje, OK Okamoto, AR Muotri, M Zatz, Multipotent stem cells from umbilical cord: cord is richer than blood, Stem Cells, 26, 146 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. AI Caplan, and ennis JE, Mesenchymal stem cells as trophic mediators, J. Cell Biochem., 98, 1076 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. JS Burchfield, S Dimmeler, Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis, Fibrogenesis Tissue Repair, 1, 4 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. WS Kim, BS Park, JH Sung, Protective role of adipose-derived stem cells and their soluble factors in photoaging, Arch Dermatol Res, 301, 329 (2009).

    Article  PubMed  Google Scholar 

  28. WS Kim, BS Park, SH Park, HK Kim, JH Sung, Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors, J. Dermatol Sci., 53, 96 (2009).

    Article  PubMed  CAS  Google Scholar 

  29. BS Park, KA Jang, JH Sung, JS Park, YH Kwon, KJ Kim, WS Kim, Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging, Dermatol Surg., 34, 1323 (2008).

    PubMed  CAS  Google Scholar 

  30. WS Kim, BS Park, JH Sung, JM Yang, SB Park, SJ Kwak, JS Park, Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts, J. Dermatol Sci., 48, 15 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. WS Kim, SH Park, SJ Ahn, HK Kim, JS Park, GY Lee, KJ Kim, KK Whang, SH Kang, BS Park, Whitening effect of adipose-derived stem cells: a critical role of TGF-beta 1, Biol. Pharm. Bull., 31, 606 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. WS Kim, BS Park, HK Kim, JS Park, KJ Kim, JS Choi, SJ Chung, DD Kim, JH Sung, Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress, J. Dermatol. Sci., 49, 133–142 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. K Sato, M Toriyama, Effect of pyrroloquinoline quinone (PQQ) on melanogenic protein expression in murine B16 melanoma, J. Dermatol. Sci., 53, 140 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. R Busca, R Ballotti, Cyclic AMP a key messenger in the regulation of skin pigmentation, Pigment Cell Res., 13, 60 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. S Moretti, A Spallanzani, L Amato, G Hautmann, I Gallerani, P Fabbri, Vitiligo and epidermal microenvironment: possible involvement of keratinocyte-derived cytokines, Arch. Dermatol., 138, 273 (2002).

    Article  PubMed  Google Scholar 

  36. P Paquet, GE Pierard, Interleukin-6 and the skin, Int. Arch. Allergy Immunol., 109, 308–317 (1996).

    Article  PubMed  CAS  Google Scholar 

  37. RM Gallucci, T Sugawara, B Yucesoy, K Berryann, PP Simeonova, JM Matheson, and Luster MI, Interleukin-6 treatment augments cutaneous wound healing in glucocorticoid treated immunosuppressed mice, J. Interferon Cytokine Res., 21, 603 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. Choi H, Kim K, Han J, Cho H, Jin SH, Lee EK, Shin DW, Lee TR, Lee AY, Noh M, Kojic acid-induced IL-6 production in human keratinocytes plays a role in its anti-melanogenic actibity in skin, J. Dermatol. Sci., 66(3), 207 (2012).

    Article  Google Scholar 

  39. K Sugimoto, T Nishimura, K Nomura, K Sugimoto, T Kuriki, Inhibitory effects of alpha-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model, Biol. Pharm Bull., 27, 510 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Jae Chun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, SH., Son, ES., Park, YJ. et al. Effect of cultured medium of human umbilical cord blood-derived mesenchymal stem cells on melanogenic enzyme activity in mouse B16 melanoma cells. Tissue Eng Regen Med 11, 414–422 (2014). https://doi.org/10.1007/s13770-014-4042-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-4042-4

Key words

Navigation