Skip to main content
Log in

Nerve cell differentiation using constant and programmed electrical stimulation through conductive non-functional graphene nanosheets film

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Electrical signal is one of the most important elctrophysiological phenomena and is widely used in electrogensis and electrodiagnosis. The use of appropriate external electrical stimulation (ES) to in situ modify cellular behavior can desirably promote tissue regeneration. Considering its high electron mobility and surface area, graphene could become a promising conductive scaffold in biomedical applications. In this study, a programmed ES, comprehensively concerning the ES factors, such as ES period, intensity, frequency, electrical pulse and interval change, was used to modify Rat pheochromocytoma PC-12 cells behaviours through a large size non-functional graphene nano-film (NGNF) which was prepared by spray coating the high conducting graphene sheets onto polyurethane film. The constant ES was used to select the optimized ES intensity and as well as control. The optimized ES condition with intensity of 100 mV/mm was shown to significantly enhance PC-12 cell differentiation, neurite extension and growth. Comparing the results by different ES, i.e. the constant 100 mV/mm and the programmed ES 100 mV/mm at 1 Hz and 10 Hz, the programmed ES increased longer neuritis length. The positive enhancement to nerve behaviour by programmed ES was still significant maintained at long periods of ES (48 h).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NC Spitzer, NJ Lautermilch, RD Smith, et al., Coding of neuronal differentiation by calcium transients. Bioessays, 22, 811 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. KM Baumbauer, JR Huie, AJ Hughes, et al., Timing in the absence of supraspinal input II: regularly spaced stimulation induces a lasting alteration in spinal function that depends on the NMDA receptor, BDNF release, and protein synthesis. J Neurosci, 29, 14383 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. D Billups, JG Hanley, M Orme, et al., GABAC receptor sensitivity is modulated by interaction with MAP1B. J Neurosci, 20, 8643 (2000).

    CAS  PubMed  Google Scholar 

  4. C Rosenmund, GL Westbrook, Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron, 10, 805 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. WJ Wang, WC Liu, H Zhu, et al., Electrical Stimulation Promotes BDNF Expression in Spinal Cord Neurons Through Ca2+- and Erk-Dependent Signaling Pathways. Cellular and Molecular Neurobiology, 31, 459 (2011).

    Article  CAS  Google Scholar 

  6. LM Jakubek, S Marangoudakis, J Raingo, et al., The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes. Biomaterials, 30, 6351 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. NM Geremia, T Gordon, TM Brushart, et al., Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp Neurol, 205, 347 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. T Gordon, O Sulaiman, JG Boyd, Experimental strategies to promote functional recovery after peripheral nerve injuries. J Peripher Nerv Syst, 8, 236 (2003).

    Article  PubMed  Google Scholar 

  9. TM Brushart, PN Hoffman, RM Royall, et al., Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci, 22, 6631 (2002).

    CAS  PubMed  Google Scholar 

  10. TM Brushart, R Jari, V Verge, et al., Electrical stimulation restores the specificity of sensory axon regeneration. Exp Neurol, 194, 221 (2005).

    Article  PubMed  Google Scholar 

  11. T Gordon, N Amirjani, DC Edwards, et al., Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp Neurol, 223, 192 (2010).

    Article  PubMed  Google Scholar 

  12. T Liu, SJ Shang, B Liu, et al., Two distinct vesicle pools for depolarization-induced exocytosis in somata of dorsal root ganglion neurons. J Physiol, 589, 3507 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. PM Richardson, UM Mcguinness, AJ Aguayo, Axons from Cns Neurons Regenerate into Pns Grafts. Nature, 284, 264 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. CC Yeh, YC Lin, FJ Tsai, et al., Timing of applying electrical stimulation is an important factor deciding the success rate and maturity of regenerating rat sciatic nerves. Neurorehabil Neural Repair, 24, 730 (2011).

    Article  Google Scholar 

  15. K Haastert-Talini, R Schmitte, N Korte, et al., Electrical Stimulation Accelerates Axonal and Functional Peripheral Nerve Regeneration across Long Gaps. J Neurotrauma 28, 661 (2011).

    Article  PubMed  Google Scholar 

  16. J Huang, L Lu, X Hu, et al., Electrical stimulation accelerates motor functional recovery in the rat model of 15-mm sciatic nerve gap bridged by scaffolds with longitudinally oriented microchannels. Neurorehabil Neural Repair 24, 736 (2011).

    Article  Google Scholar 

  17. MP Prabhakaran, JR Venugopal, TT Chyan, et al., Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng Part A, 14, 1787 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. CE Schmidt, JB Leach, Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng, 5, 293 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. LP Wang, W Wang, L Di, et al., Protein adsorption under electrical stimulation of neural probe coated with polyaniline. Colloids Surf B Biointerfaces, 80, 72 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. N Gomez, JY Lee, JD Nickels, et al., Micropatterned Polypyrrole: A Combination of Electrical and Topographical Characteristics for the Stimulation of Cells. Adv Funct Mater, 17, 1645 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. A Kotwal, CE Schmidt, Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials, 22, 1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. N Patel, MM Poo, Orientation of neurite growth by extracellular electric fields. J Neurosci, 2, 483 (1982).

    CAS  PubMed  Google Scholar 

  23. S Meng, M Rouabhia, G Shi, et al., Heparin dopant increases the electrical stability, cell adhesion, and growth of conducting polypyrrole/poly(L,L-lactide) composites. J Biomed Mater Res A, 87, 332 (2008).

    Article  PubMed  Google Scholar 

  24. D Movia, A Prina-Mello, D Bazou, et al., Screening the Cytotoxicity of Single-Walled Carbon Nanotubes Using Novel 3D Tissue-Mimetic Models. ACS Nano, 5, 9278 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. MD Stoller, SJ Park, YW Zhu, et al., Graphene-Based Ultracapacitors. Nano Letters, 8, 3498 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. C Lee, XD Wei, JW Kysar, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. AA Balandin, S Ghosh, WZ Bao, et al., Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. A Sasidharan, LS Panchakarla, P Chandran, et al., Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale, 3, 2461 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Y Zhang, SF Ali, E Dervishi, et al., Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 4, 3181 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Y Chang, ST Yang, JH Liu, et al., In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett, 200, 201 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. X Sun, Z Liu, K Welsher, et al., Nano-Graphene Oxide for Cellular Imaging and Drug Delivery. Nano Res, 1, 203 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. XH Kang, J Wang, H Wu, et al., Glucose Oxidase-graphenechitosan modified electrode for direct electrochemistry and glucose sensing. Biosensors & Bioelectronics, 25, 901 (2009).

    Article  CAS  Google Scholar 

  33. Y Wang, YM Li, LH Tang, et al., Application of graphenemodified electrode for selective detection of dopamine. Electrochemistry Communications, 11, 889 (2009).

    Article  CAS  Google Scholar 

  34. Y Wang, YY Shao, DW Matson, et al., Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. Acs Nano, 4, 1790 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. M Lotya, Y Hernandez, PJ King, et al., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 131, 3611 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. CE Hamilton, JR Lomeda, ZZ Sun, et al., High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Letters, 9, 3460 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. LA Greene, AS Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A, 73, 2424 (1976).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. H Fan, L Wang, K Zhao, et al., Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules, 11, 2345 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. RL Veech, Y Kashiwaya, MT King, The resting membrane potential of cells are measures of electrical work, not of ionic currents. Integr Physiol Behav Sci, 30, 283 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. W Gerstner, WM Kistler, Spiking neuron models: single neurons, populations, plasticity. Cambridge University Press: (2002).

    Book  Google Scholar 

  41. J Engel, HA Schultens, D Schild, Small conductance potassium channels cause an activity-dependent spike frequency adaptation and make the transfer function of neurons logarithmic. Biophys J, 76, 1310 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. SD Hocherman, R Werman, Y Yarom, An analysis of the longlasting after-hyperpolarization of guinea-pig vagal motoneurones. J Physiol, 456, 325 (1992)

    CAS  PubMed Central  PubMed  Google Scholar 

  43. J Benda, RM Hennig, Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci, 24, 113 (2008).

    Article  PubMed  Google Scholar 

  44. B Ermentrout, M Pascal, B Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators. Neural Comput, 13, 1285 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. D Hansel, G Mato, C Meunier, Synchrony in excitatory neural networks. Neural Comput, 7, 307 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. AA Al-Majed, CM Neumann, TM Brushart, et al., Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci, 20, 2602 (2000).

    CAS  PubMed  Google Scholar 

  47. J Schimmelpfeng, KF Weibezahn, H Dertinger, Neuronal outgrowth of PC-12 cells after combined treatment with nerve growth factor and a magnetic field: influence of the induced electric field strength. Bioelectromagnetics, 26, 74 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. CE Schmidt, VR Shastri, JP Vacanti, et al., Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci U S A, 94, 8948 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. N Gomez, CE Schmidt, Nerve growth factor-immobilized polypyrrole: bioactive electrically conducting polymer for enhanced neurite extension. J Biomed Mater Res A, 81, 135 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  50. DL Robinson, ME Goldberg, GB Stanton, Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. J Neurophysiol, 41, 910 (1978).

    CAS  PubMed  Google Scholar 

  51. JS Park, K Park, HT Moon, et al., Electrical pulsed stimulation of surfaces homogeneously coated with gold nanoparticles to induce neurite outgrowth of PC12 cells. Langmuir, 25, 451 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. P Moroder, MB Runge, HA Wang, et al., Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomaterialia, 7, 944 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. S Ostojic, Interspike interval distributions of spiking neurons driven by fluctuating inputs. J Neurophysiol, 106, 361 (2011).

    Article  PubMed  Google Scholar 

  54. T Gordon, KM Chan, OA Sulaiman, et al., Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury. Neurosurgery, 65, A132 (2009).

    Article  PubMed  Google Scholar 

  55. MC Lu, CY Ho, SF Hsu, et al., Effects of electrical stimulation at different frequencies on regeneration of transected peripheral nerve. Neurorehabil Neural Repair, 22, 367 (2008).

    Article  PubMed  Google Scholar 

  56. E Saygili, OR Rana, C Gunzel, et al., Rate and irregularity of electrical activation during atrial fibrillation affect myocardial NGF expression via different signalling routes. Cell Signal 24, 99 (2011).

    Article  PubMed  Google Scholar 

  57. RW Davies, BJ Morris, Molecular Biology of the Neuron. Oxford University Press: (2006).

    Google Scholar 

  58. J Benda, AV Herz, A universal model for spike-frequency adaptation. Neural Comput, 15, 2523 (2003).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, S. Nerve cell differentiation using constant and programmed electrical stimulation through conductive non-functional graphene nanosheets film. Tissue Eng Regen Med 11, 274–283 (2014). https://doi.org/10.1007/s13770-014-0011-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-0011-1

Key words

Navigation