Skip to main content
Log in

Potential of fluorophore labeled aptamers for Pseudomonas aeruginosa detection in drinking water

  • Original Article/Environmental Sciences
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Pseudomonas aeruginosa has been considered as a representative pathogenic bacteria in drinking water. In order to detect P. aeruginosa, aptamers were utilized in this study. In particular, fluorescein isothiocyannate (FITC) and quantum dot (QD) were used for aptamer labeling. FITC-labeled aptamers showed higher binding capacity with optimal incubation time of 30 min compared to QD-labeled aptamers. However, incubation speed did not have any effect on the binding capacity of FITC-labeled aptamers to bacteria. Aptamer-binding capacity was measured according to varying cell concentrations of 0, 10, 100, and 1000 cells/mL. As a result, the limit of detection, limit of quantification, and limit of linearity of P. aeruginosa were 5.07, 5.64, and 100 cells/mL, respectively. The low detection limit shows the fluorophore-labeled aptamer potential to detect P. aeruginosa labeling in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerlund T, Nordström K, and Bernander R (1995) Analysis of cell size and DNA content in exponentially growing and stationary-phase batch cultures of Escherichia coli. J Bacteriol 177, 6791–6797.

    CAS  Google Scholar 

  • Cai J, Yao C, Xia J, Wang J, Chen M, Huang J et al. (2011) Rapid parallelized and quantitative analysis of five pathogenic bacteria by ITS hybridization using QCM biosensor. Sensor Actuat B-Chem 155, 500–504.

    Article  Google Scholar 

  • Cao X, Li S, Chen L, Ding H, Xu H, Huang Y et al. (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37, 4621–4628.

    Article  CAS  Google Scholar 

  • Carnazza S, Foti C, Gioffrè G, Felici F, and Guglielmino S (2008) Specific and selective probes for Pseudomonas aeruginosa from phage-displayed random peptide libraries. Biosens Bioelectron 23, 1137–1144.

    Article  CAS  Google Scholar 

  • Carpani I, Conti P, Lanteri S, Legnani PP, Leoni E, and Tonelli D (2008) Direct quantification of test bacteria in synthetic water-polluted samples by square wave voltammetry and chemometric methods. Biosens Bioelectron 23, 959–964.

    Article  CAS  Google Scholar 

  • Doorneweerd DD, Henne WA, Reifenberger RG, and Low PS (2010) Selective capture and identification of pathogenic bacteria using an immobilized siderophore. Langmuir 26, 15424–15429.

    Article  CAS  Google Scholar 

  • Dwarakanath S, Bruno JG, Shastry A, Phillips T, John A, Kumar A et al. (2004) Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochem Bioph Res Co 325, 739–743.

    Article  CAS  Google Scholar 

  • Esiobu N, Mohammed R, Echeverry A, Green M, Bonilla T, Hartz A et al. (2004) The application of peptide nucleic acid probes for rapid detection and enumeration of eubacteria, Staphylococcus aureus and Pseudomonas aeruginosa in recreational beaches of S. Florida. J Microbiol Meth 57, 157–162.

    Article  CAS  Google Scholar 

  • Gilmartin N and O’Kennedy R (2012) Nanobiotechnologies for the detection and reduction of pathogens. Enzyme Microb Tech 50, 87–95.

    Article  CAS  Google Scholar 

  • He F and Liu S (2004) Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor. Talanta 62, 271–277.

    Article  CAS  Google Scholar 

  • Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TMA, Jaykus LA, Schefers J et al. (2009). Selection, characterization, and application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probe 23, 20–28.

    Article  CAS  Google Scholar 

  • Kim N, Park I, and Kim D (2004) Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa. Sensor Actuat BChem 100, 432–438.

    Article  Google Scholar 

  • Ligler FS (2009) Perspective on optical biosensors and integrated sensor systems. Anal Chem 81, 519–526.

    Article  CAS  Google Scholar 

  • Liu C, Zeng GM, Tang L, Zhang Y, Li YP, Liu YY et al. (2011) Electrochemical detection of Pseudomonas aeruginosa 16S rRNA using a biosensor based on immobilized stem-loop structured probe. Enzyme Microb Tech 49, 266–271.

    Article  CAS  Google Scholar 

  • Mena KD and Gerba CP (2009) Risk assessment of Pseudomonas aeruginosa in water. Rev Environ Contam Toxicol 201, 71–115.

    Article  CAS  Google Scholar 

  • Navarro Liorens JM, Tormo A, and Martinez-Garcia E (2010) Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 34, 476–495.

    Article  Google Scholar 

  • Pang P, Huang S, Cai Q, Yao S, Zeng K, and Grimes CA (2007) Detection of Pseudomonas aeruginosa using a wireless magnetoelastic sensing device. Biosens Bioelectron 23, 295–299.

    Article  CAS  Google Scholar 

  • Paoli GC (2006) Molecular approaches to immunological biosensors: phage displayed antibodies for the detection of foodborne pathogenic bacteria. In Advances in Microbial Food Safety (Vol. 931), pp. 41–54, ACS publications, Washington, DC, USA.

    Article  CAS  Google Scholar 

  • Park JS, Lee CM, and Lee KY (2007) A surface plasmon resonance biosensor for detecting Pseudomonas aeruginosa cells with self-assembled chitosan-alginate multilayers. Talanta 72, 859–862.

    Article  CAS  Google Scholar 

  • Reinemann C, Stoltenburg R, and Strehlitz B (2009) Investigations on the specificity of DNA aptamers binding to ethanolamine. Anal Chem 81, 3973–3978.

    Article  CAS  Google Scholar 

  • Rodriguez-Mozaz S, Lopez de Alda MJ, and Barceló D (2006) Biosensors as useful tools for environmental analysis and monitoring. Anal Bioanal Chem 386, 1025–1041.

    Article  CAS  Google Scholar 

  • Rusin PA, Rose JB, Haas CN, and Gerba CP (1997) Risk assessment of opportunistic bacterial pathogens in drinking water. Rev Environ Contam Toxicol 152, 57–83.

    Article  CAS  Google Scholar 

  • Sassolas A, Leca-Bouvier BD, and Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108, 109–139.

    Article  CAS  Google Scholar 

  • Song S, Wang L, Li J, Fan C, and Zhao J (2008) Aptamer-based biosensors. TrAC-Trend Anal Chem 27, 108–117.

    Article  CAS  Google Scholar 

  • Tennico YH, Hutanu D, Koesdjojo MT, Bartel CM, and Remcho VT (2010) On-chip aptamer-based sandwich assay for thrombin detection employing magnetic beads and quantum dots. Anal Chem 82, 5591–5597.

    Article  CAS  Google Scholar 

  • Torres-Chavolla E, and Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 24, 3175–3182.

    Article  CAS  Google Scholar 

  • Wang KY, Zeng YL, Yang XY, Li WB, and Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30, 273–278.

    Article  Google Scholar 

  • Wang Y, Hammes F, Düggelin M, and Egli T (2008) Influence of size, shape, and flexibility on bacterial passage through micropore membrane filters. Environ Sci Technol 42, 6749–6754.

    Article  CAS  Google Scholar 

  • Zhao Y, Ye M, Chao Q, Jia N, Ge Y, and Shen H (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agr Food Chem 57, 517–524.

    Article  CAS  Google Scholar 

  • Zhou G, Wen S, Liu Y, Li R, Zhong X, Feng L et al. (2011) Development of a DNA microarray for detection and identification of Legionella pneumophila and ten other pathogens in drinking water. Int J Food Microbiol 145, 293–300.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Am Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, L.H., Yu, HW., Kim, YH. et al. Potential of fluorophore labeled aptamers for Pseudomonas aeruginosa detection in drinking water. J Korean Soc Appl Biol Chem 56, 165–171 (2013). https://doi.org/10.1007/s13765-013-3019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13765-013-3019-7

Keywords

Navigation