Skip to main content
Log in

Biosynthesis of polyhydroxyalkanoates employing a newly isolated Paramecium multimicronucleatum

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Synthetic plastics are an environmental hazard due to their resistance to natural degradation leading to environmental pollution and perilous effects on ecosystem. Biodegradable plastics such as polyhydroxyalkanoates (PHAs) are the potential candidates to replace synthetic plastics. The present study focuses on the extraction and characterization of PHAs from an industrial-wastewater derived Paramecium multimicronucleatum. Paramecium culture was grown in the Bold Basal medium alone (hereafter used as positive control) and with the supplement of glucose (180 g/L) and cadmium chloride (10 g/L) to investigate the PHA production. The highest PHA production 0.28 g/L was achieved in 180 g/L glucose-supplemented medium and 0.12 g/L in positive control, while the lowest PHA production was 0.05 g/L in case of 10 g/L metal-treated samples. Fourier transform infrared spectroscopy (FTIR) and Gas chromatography–mass spectrometry-based (GC–MS) characterization showed the PHA to contain 3-hydroxybutyrate as the prime monomer (93.91%). The appearance of other esters such as pentadecanoic acid ethyl ester, hexadecanoic acid ethyl ester, and octadecanoic acid ethyl ester indicated the presence of medium-chain length PHAs. This is the first study reporting a ciliate, P.multimicronucleatum as a microbial cell factory producing substantial concentration of PHAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi K (2020) Bad science in a plastic world. J R Soc Med 113:47. https://doi.org/10.1177/0141076820905749

    Article  Google Scholar 

  • Alva Munoz LE, Riley MR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng 100:882–888

    Article  Google Scholar 

  • Amanchi N, Bhagavathi M (2009) Comparative study on cytotoxicity of delfin insecticide using two vital protozoan ciliates Paramecium caudatum and Oxytricha fallax. Asian J Exp Sci 23:55–60

    CAS  Google Scholar 

  • Amulya K, Katakojwala R, Ramakrishn S, Mohan SV (2021) Low carbon biodegradable polymer matrices for sustainable future. Compos Part C Open Access 4:100111

    Article  CAS  Google Scholar 

  • Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S (2016) Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol 89:161–174

    Article  CAS  Google Scholar 

  • Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomater 2013:752821. https://doi.org/10.1155/2013/752821

    Article  CAS  Google Scholar 

  • Cain A (1947) The use of nile blue in the examination of lipoids. J Cell Sci 3:383–392

    Article  Google Scholar 

  • Cha S-h, Son J-h, Jamal Y, Zafar M, Park H-s (2016) Characterization of polyhydroxyalkanoates extracted from wastewater sludge under different environmental conditions. Biochem Eng J 112:1–12

    Article  CAS  Google Scholar 

  • Chee JY, Tan Y, Samian MR, Sudesh K (2010) Isolation and characterization of a Burkholderia sp. USM (JCM15050) capable of producing polyhydroxyalkanoate (PHA) from triglycerides, fatty acids and glycerols. J Polym Environ 18:584–592

    Article  CAS  Google Scholar 

  • Chen CW, Don TM, Yen HF (2006) Enzymatic extruded starch as a carbon source for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Haloferax mediterranei. Process Biochem 41:2289–2296

    Article  CAS  Google Scholar 

  • Costa SS, Miranda AL, Andrade BB, de Jesus AD, Souza CO, de Morais MG, Costa JAV, Druzian JI (2018) Influence of nitrogen on growth, biomass composition, production, and properties of polyhydroxyalkanoates (PHAs) by microalgae. Int J Biol Macromol 116:552–562

    Article  CAS  Google Scholar 

  • De Carvalho E, Chebil M, Fay F, Renard E, Langlois V (2023) A solvent-free process to design low density polyhydroxyalkanoate. Polym Renew Resour 14:61–75

    Google Scholar 

  • De Vrije T, Nagtegaal RM, Veloo RM, Kappen FH, De Wolf FA (2023) Medium chain length polyhydroxyalkanoate produced from ethanol by Pseudomonas putida grown in liquid obtained from acidogenic digestion of organic municipal solid waste. Bioresour Technol 375:128825

    Article  Google Scholar 

  • Desouky S, El-Shiekh H, Elabd M, Shehab A (2014) Screening, optimization and extraction of polyhydroxyalkanoates (PHAs) from Bacillus thuringienesis. J Adv Biol Biotechnol 1:40–54

    Article  Google Scholar 

  • Esan EO, Abbey L, Yurgel S (2019) Exploring the long-term efect of plastic on compost microbiome. PLoS ONE 14:1–17. https://doi.org/10.1371/journal.pone.0214376

    Article  CAS  Google Scholar 

  • Estevez Alonso Á, Altamira Algarra B, Arnau Segarra C, Van Loosdrecht MC, Kleerebezem R, Werker A (2022) Process conditions affect properties and outcomes of polyhydroxyalkanoate accumulation in municipal activated sludge. Bioresour Technol 364:128035

    Article  CAS  Google Scholar 

  • Favaro L, Basaglia M, Casella S (2019) Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuel Bioprod Biorefin 13:208–227

    Article  CAS  Google Scholar 

  • Findlay RH, White DC (1983) Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium. Appl Env Microbiol 45:71–78

    Article  CAS  Google Scholar 

  • Ghosh S, Greiserman S, Chemodanov A, Slegers PM, Belgorodsky B, Epstein M, Kribus A, Gozin M, Chein G-Q, Golberg A (2021) Polyhydroxyalkanoates and biochar from green macroalgal Ulva sp. biomass subcritical hydrolysates: process optimization and a priori economic and greenhouse emissions break-even analysis. Sci Total Environ. 770:145281

    Article  CAS  Google Scholar 

  • Gowri RS, Vijayaraghavan R, Meenambigai P (2014) Microbial degradation of reactive dyes—a review. Int J Curr Microbiol Appl Sci 3:421–436

    CAS  Google Scholar 

  • Jain P (2017) Effect of biodegradation and non degradable substances in environment. Int J Life Sci 1:50–55. https://doi.org/10.21744/ijls.v1i1.24

    Article  Google Scholar 

  • Kanjanachumpol P, Kulpreecha S, Tolieng V, Thongchul N (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst Eng 36:1463–1474

    Article  CAS  Google Scholar 

  • Karan H, Funk C, Grabert M, Oey M, Hankamer B (2019) Green bioplastics as part of a circular bioeconomy. Trends Plant Sci 24:237–249

    Article  CAS  Google Scholar 

  • Kavitha G, Kurinjimalar C, Sivakumar K, Palani P, Rengasamy R (2016) Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcus braunii. Int J Biol Macromol 89:700–706

    Article  CAS  Google Scholar 

  • Kenny ST, Runic JN, Kaminsky W, Woods T, Babu RP, Keely CM, Blau W, O’Connor KE (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42:7696–7701

    Article  CAS  Google Scholar 

  • Khan NT, Bibi M, Yousuf S, Qureshi IH, Al-Majid AM, Mesaik MA, Khalid AS, Sattar SA, Choudhary MI (2012) Synthesis of some potent immunomodulatory and anti-inflammatory metabolites by fungal transformation of anabolic steroid oxymetholone. Chem Cent J 6:1–11

    Article  Google Scholar 

  • Kharb J, Saharan R (2022) Sustainable biodegradable plastics and their applications: a mini review. In: IOP conference series: materials science and engineering, vol 1248, no 1. IOP Publishing, p 012008

  • Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874

    Article  CAS  Google Scholar 

  • Kumar M, Gupta A, Thakur IS (2016a) Carbon dioxide sequestration by Chemolithotrophic oleaginous bacteria for production and optimization of polyhydroxyalkanoate. Bioresour Technol 213:249–256

    Article  CAS  Google Scholar 

  • Kumar M, Gupta J, Thakur I (2016b) Production and optimization of polyhydroxyalkanoate from oleaginous bacteria Bacillus sp. ISTC RRJMB 5:80–89

    Google Scholar 

  • Kumar M, Singhal A, Verma PK, Thakur IS (2017) Production and characterization of polyhydroxyalkanoate from lignin derivatives by Pandoraea sp. Istkb ACS Omega 2:9156–9163

    Article  CAS  Google Scholar 

  • Kumar M, Rathour R, Singh R, Sun Y, Pandey A, Gnansounou E, Lin KYA, Tsang DC, Thakur IS (2020) Bacterial polyhydroxyalkanoates: opportunities, challenges, and prospects. J Clean Prod 263:121500

    Article  CAS  Google Scholar 

  • Kuruppalil Z (2011) Green plastics: an emerging alternative for petroleum-based plastics. Int J Eng Res Innov 3(1):59–64

    Google Scholar 

  • Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other Haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127

    Article  CAS  Google Scholar 

  • Liaqat A, Zahra I, Abbas SZ, Wabaidur SM, Eldesoky GE, Islam MA, Rafatullah M, Shakoori FR, Shakoori AR (2022) Copper Bioremediation Ability of Ciliate Paramecium multimicronucleatum Isolated from Industrial Wastewater. Water 14:1419

    Article  CAS  Google Scholar 

  • Lohr €A, Savelli H, Beunen R, Kalz M, Ragas A, Van Belleghem F (2017) Solutions for global marine litter pollution. Curr Opin Environ Sustain 28:90–99

    Article  Google Scholar 

  • Luengo JM, García B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260. https://doi.org/10.1016/S1369-5274(03)00040-7

    Article  CAS  Google Scholar 

  • Machineni L, Anupoju GR (2022) Review on valorization of lignocellulosic biomass for green plastics production: sustainable and cleaner approaches. Sustain Energy Technol Assess 53:102698

    Google Scholar 

  • Marangoni C, Furigo A, De Aragao GM (2002) Production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochem 38:137–141

    Article  CAS  Google Scholar 

  • McClements DJ, Gumus CE (2016) Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv Colloid Interface Sci 234:3–26. https://doi.org/10.1016/j.cis.2016.03.002

    Article  CAS  Google Scholar 

  • Moghannem SA, Farag M, Shehab AM, Azab MS (2018) Exopolysaccharide production from Bacillus velezensis KY471306 using statistical experimental design. Braz J Microbiol 49:452–462

    Article  CAS  Google Scholar 

  • Mohammed S, Panda AN, Ray L (2019) An investigation for recovery of polyhydroxyalkanoates (PHA) from Bacillus sp. BPPI-14 and Bacillus sp. BPPI-19 isolated from plastic waste landfill. Int J Biol Macromol 134:1085–1096

    Article  CAS  Google Scholar 

  • Mohapatra S, Samantaray DP, Samantaray SM (2014) Phylogenetic heterogeneity of the rhizospheric soil bacterial isolates producing PHAs revealed by comparative analysis of 16s-rRNA. Int J Curr Microbiol Appl Sci 3:680–690

    Google Scholar 

  • Morya R, Kumar M, Kumar V, Thakur IS (2021) Biovalorization of lignin derived compounds with molasses as co-substrate for polyhydroxyalkanoate production. Environ Technol Innov 23:101695

    Article  CAS  Google Scholar 

  • Nath A, Dixit M, Bandiya A, Chavda S, Desai A (2008) Enhanced PHB production and scale up studies using cheese whey in fed batch culture of Methylobacterium sp. ZP24. Bioresour Technol 99:5749–5755

    Article  CAS  Google Scholar 

  • Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis DA (2009) Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 44:847–853

    Article  CAS  Google Scholar 

  • Park SJ, Choi JI, Lee SY (2005) Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb Technol 36:579–588

    Article  CAS  Google Scholar 

  • Peng G, Bellerby R, Zhang F, Sun X, Li D (2020) The ocean’s ultimate trashcan: hadal trenches as major depositories for plastic pollution. Water Res 168:115–121

    Article  Google Scholar 

  • Pernicova I, Novackova I, Sedlacek P, Kourilova X, Kalina M, Kovalcik A, Koller M, Nebesarova J, Krzyzanek V, Hrubanova K (2020) Introducing the newly isolated bacterium Aneurinibacillus sp. H1 as an auspicious thermophilic producer of various polyhydroxyalkanoates (PHA) copolymers–1 Isolation and characterization of the bacterium. Polymers. 12(6):1235

    Article  CAS  Google Scholar 

  • Povolo S, Casella S (2003) Bacterial production of PHA from lactose and cheese whey permeate. Macromolecular symposia. Wiley Online Library, 1–10.

  • Ramzan U, Shakoori FR, Zahid MT, Majeed W, Zahra I, Abbas SZ, Hedfi A, Hassan S, Shakoori AR, Mutery AA (2022) Biodegradation and Decolorization of Textile Azo Dyes by Paramecium caudatum Isolated from Industrial Wastewater. Water 14:3553

    Article  CAS  Google Scholar 

  • Ratledge C, Kristiansen B (2001) Basic biotechnology. Cambridge University Press, UK

    Google Scholar 

  • Raza ZA, Tariq MR, Majeed MI, Banat IM (2019) Recent developments in bioreactor scale production of bacterial polyhydroxyalkanoates. Bioprocess Biosyst Eng 42:901–919. https://doi.org/10.1007/s00449-019-02093-x

    Article  CAS  Google Scholar 

  • Rebocho AT, Pereira JR, Neves LA, Alves VD, Sevrin C, Grandfils C, Freitas F, Reis MA (2020) Preparation and characterization of films based on a natural p (3hb)/mcl-pha blend obtained through the co-culture of cupriavidus necator and pseudomonas citronellolis in apple pulp waste. Bioeng 7:34

    CAS  Google Scholar 

  • Roja K, Sudhakar DR, Anto S, Mathimani T (2019) Extraction and characterization of polyhydroxyalkanoates from marine green alga and cyanobacteria. Biocatal Agric Biotechnol 22:101358

    Article  Google Scholar 

  • Sagong HY, Son HF, Choi SY, Lee SY, Kim KJ (2018) Structural Insights into polyhydroxyalkanoates biosynthesis. Trends Biochem Sci 43:790–805. https://doi.org/10.1016/j.tibs.2018.08.005

    Article  CAS  Google Scholar 

  • Song JH, Jeon CO, Choi MH, Yoon SC, Park W (2008) Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. J Microbiol Biotechnol 18:1408–1415

    CAS  Google Scholar 

  • Stanley A, Murthy PK, Vijayendra S (2020) Characterization of polyhydroxyalkanoate produced by Halomonas venusta KT832796. J Polym Environ 28:973–983

    Article  CAS  Google Scholar 

  • Steinbiichel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Stevens ES (2002) How green are green plastics? Biocycle 43(12):42

    Google Scholar 

  • Sudesh K, Bhubalan K, Chuah JA, Kek YK, Kamilah H, Sridewi N, Lee YF (2011) Synthesis of polyhydroxyalkanoate from palm oil and some new applications. App Microbiol Biot 89:1373–1386

    Article  CAS  Google Scholar 

  • Sudhakar MP, Maurya R, Mehariya S, Karthikeyan OP, Dharani G, Arunkumar K, Pereda SV, Hernandez-Gonzalez MC, Buschmann AH, Pugazhendhi A (2023) Feasibility of bioplastic production using micro and macro algae-A review. Environ Res 240:117465

    Article  Google Scholar 

  • Suwannasing W, Imai T, Kaewkannetra P (2015) Cost-effective defined medium for the production of polyhydroxyalkanoates using agricultural raw materials. Bioresour Technol 194:67–74

    Article  CAS  Google Scholar 

  • Tan G-YA, Chen C-L, Li L, Ge L, Wang L, Razaad IMN, Li Y, Zhao L, Mo Y, Wang J-Y (2014) Start a research on biopolymer polyhydroxyalkanoate (pha): a review. Polymers 6:706–754

    Article  Google Scholar 

  • Tchouboukov A, Brandl H (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromolecules 33:4690–4698

    Article  Google Scholar 

  • Thu NTT, Hoang LH, Cuong PK, Viet-Linh N, Nga TTH, Kim DD, Leong YK, Nhi-Cong LT (2023) Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. Tsls24 yeast isolated in Vietnam. Sci. Rep. 13:3137

    Article  CAS  Google Scholar 

  • Van-Thuoc D, Quillaguaman J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly (3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428

    CAS  Google Scholar 

  • Vega-Castro O, Contreras-Calderon J, León E, Segura A, Arias M, Pérez L, Sobral PJ (2016) Characterization of a polyhydroxyalkanoate obtained from pineapple peel waste using Ralsthonia eutropha. J Biotechnol 231:232–238

    Article  CAS  Google Scholar 

  • Wagner TP (2017) Reducing single-use plastic shopping bags in the USA. Waste Manag 70:3–12. https://doi.org/10.1016/j.wasman.2017.09.003

    Article  Google Scholar 

  • Williams SF, Rizk S, Martin DP (2013) Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomed Tech. 58:439–452. https://doi.org/10.1515/bmt-2013-0009

    Article  CAS  Google Scholar 

  • Yamaguchi T, Narsico J, Kobayashi T, Inoue A, Ojima T (2019) Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J Biosci Bioeng. 128:203–208. https://doi.org/10.1016/j.jbiosc.2019.02.008

    Article  CAS  Google Scholar 

  • Zahra I, Liaqat A, Betenbaugh M, Ramzan U, Hedfi Elmnasri K, Hedfi A, Ali M, Albogami B, Shakoori FR, Shakoori AR (2023) Bioremediation of heavy metals using a novel species of ciliate Paramecium multimicronucleatum isolated from industrial wastewater. Mater Res Express 10:035403

    Article  Google Scholar 

  • Zhu J, Wang C (2020) Biodegradable plastics: green hope or greenwashing? Mar Pollut Bull 161:111774. https://doi.org/10.1016/j.marpolbul.2020.111774

    Article  CAS  Google Scholar 

  • Zuriani R, Vigneswari S, Azizan M, Majid M, Amirul A (2013) A high throughput Nile red fluorescence method for rapid quantification of intracellular bacterial polyhydroxyalkanoates. Biotechnol Bioprocess Eng 18:472–478

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge University of the Punjab, New Campus, Lahore Pakistan for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rauf Shakoori.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Consent to participate

All the authors have participated in the research and preparation of the manuscript.

Consent to publication

All the authors have agreed to publish the manuscript in this journal.

Ethical approval

Not applicable.

Additional information

Editorial responsibility: S. Mirkia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 59 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, I., Arshad, A., Betenbaugh, M. et al. Biosynthesis of polyhydroxyalkanoates employing a newly isolated Paramecium multimicronucleatum. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05681-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05681-x

Keywords

Navigation