Skip to main content

Advertisement

Log in

Characterization of Polyhydroxyalkanoate Produced by Halomonas venusta KT832796

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Halophilic microorganisms produce several metabolites having potential application in biotechnology and industry. They also produce polyhydroxyalkanoates (PHA), which are suitable replacements for conventional plastics for packaging food and non-food materials due to their biocompatible and biodegradable properties. PHA produced by the native isolate of Halomonas venusta KT832796 using a minimal medium was made into a film. It was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, GC–MS, UTM (Mechanical strength), Differential Scanning Calorimetry (DSC) and X-ray diffraction (XRD) analysis. Based on FTIR, NMR and GC–MS analyses the polymer produced by Halomonas venusta KT832796 was found to be poly(3-hydroxybutyrate). The polymer had a tensile strength of 26 MPa and Young’s modulus of 3 GPa and the melting temperature Tm 173.59 °C, which are found to be similar to the standard PHB polymer and the crystalline state was revealed by XRD pattern. This PHB polymer can be used in food packaging systems and medical applications for drug delivery. This is the first communication on characterization of PHA produced by Halomonas venusta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krishnan S, Chinnadurai GS, Perumal P (2017) Int J Biol Macromol 104:1165

    CAS  PubMed  Google Scholar 

  2. Steinbuchel A, Schlegel HF (1991) Mol Microbiol 5:535

    CAS  PubMed  Google Scholar 

  3. Salgaonkar BB, Mani K, Braganca JM (2013) J Appl Microbiol 114:1347

    CAS  PubMed  Google Scholar 

  4. Cruz MV, Araujo D, Alves VD, Freitas F, Reis MAM (2016) Int J Biol Macromol 82:243

    CAS  PubMed  Google Scholar 

  5. Steinbuchel A, Valentin H (1995) FEMS Microbiol Lett 128:219

    Google Scholar 

  6. Biradar GG, Shivasharana CT, Kaliwal BB (2018) J Polym Environ 26:1685

    CAS  Google Scholar 

  7. Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Crit Rev Food Sci 38:299

    CAS  Google Scholar 

  8. Yousuf RG, Winterburn JB (2016) Bioresour Technol 222:242

    CAS  PubMed  Google Scholar 

  9. Jeon JM, Brigham CJ, Kim YH, Kim HJ, Yi DH, Kim H, Rha C, Sinskey AJ, Yang YH (2014) Appl Microbiol Biotechnol 98:5461

    CAS  PubMed  Google Scholar 

  10. Sandhya M, Aravind J, Kanmani P (2013) Int J Environ Sci Technol 10:47

    CAS  Google Scholar 

  11. Batcha AFM, Prasad DMR, Khan MR, Abdullah H (2014) Bioprocess Biosyst Eng 37:943

    PubMed  Google Scholar 

  12. Pradhan S, Borah AJ, Poddar MK, Dikshit PK, Rohidas L, Moholkar VS (2017) Bioresour Technol 242:304

    CAS  PubMed  Google Scholar 

  13. Philip S, Keshavarz T, Roy I (2007) J Chem Technol Biotechnol 82:233

    CAS  Google Scholar 

  14. Vijayendra SVN, Shamala TR (2014) Crit Rev Biotechnol 8551:338

    Google Scholar 

  15. Ray S, Kalia VC (2017) Biomater Nat Adv Dev Ther 57(3):261

    CAS  Google Scholar 

  16. Jangra MR, Ikbal K, Nehra K, Jangra S, Pippal A, Sikka VK (2018) Biosci Biotechnol Res Commun 11:97

    Google Scholar 

  17. Chen GQ (2009) Chem Soc Rev 38:2434

    CAS  PubMed  Google Scholar 

  18. Chee JY, Yoga SS, Lau NS, Ling SC, Abed RMM, Sudesh K (2010) In: Méndez-Vilas A (ed) Technology and education topics in applied microbiology and applied biotechnology. Microbiology series, vol 2. Formatex Research Center, Badajoz, p 1395

    Google Scholar 

  19. Koller M, Gasser I, Schmid F, Berg G (2011) Eng Life Sci 11(3):222

    CAS  Google Scholar 

  20. Mohapatra S, Mohanta PR, Sarkar B, Daware A, Kumar C, Samantaray DP (2017) Proc Natl Acad Sci India Sect B 87:459

    CAS  Google Scholar 

  21. Salgaonkar BB, Braganca JM (2019) Advances in biological science research. A practical approach. Academic Press, Cambridge, p 419

    Google Scholar 

  22. Oren A (2008) Saline Syst 4:2

    PubMed  PubMed Central  Google Scholar 

  23. Gao S, Zhang L (2014) Adv Res Mater 1033–1034:306

    Google Scholar 

  24. Quillaguam J, Delgado O, Mattiasson B, Hatti-kaul R (2006) Enz Microb Technol 38:148

    Google Scholar 

  25. Koller M, Hesse P, Bona R, Kutschera C, Atlic A, Braunegg G (2007) Macromol Biosci 7:218

    CAS  PubMed  Google Scholar 

  26. Stanley A, Kumar HNP, Mutturi S, Vijayendra SVN (2018) Appl Biochem Biotechnol 184:935

    CAS  PubMed  Google Scholar 

  27. Shamala TR, Divyashree MS, Davis R, Kumari KSL, Vijayendra SVN, Raj B (2009) Indian J Microbiol 49:251

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu J, Guo BH, Yang R, Wu Q, Chen GQ, Zhang ZM (2002) Polymer 43:689

    Google Scholar 

  29. Doi Y, Kawaguchi Y, Nakamura Y, Kunioka M (1989) Appl Environ Microbiol 55:2932

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Braunegg G, Sonnleiter B, Lafferty RM (1978) Eur J Appl Microbiol Biotechnol 6:29

    CAS  Google Scholar 

  31. Siemann U (2005) Prog Colloid Polym Sci 130:1

    CAS  Google Scholar 

  32. Wang B, Sharma-Shivappa RR, Olson JW, Khan SA (2013) Ind Crop Prod 43:802

    CAS  Google Scholar 

  33. Barham PG, Keller A, Otum EL, Holmes A (1984) J Mater Sci 19:2781

    CAS  Google Scholar 

  34. Martino L, Cruz MV, Scoma A, Freitas F, Bertin L, Scandola M, Reis MAM (2014) Int J Biol Marcomol 71:117

    CAS  Google Scholar 

  35. Salgaonkar BB, Braganca JM (2015) Int J Biol Macromol 78:339

    CAS  PubMed  Google Scholar 

  36. Rodrıguez-Contreras A, Koller M, Miranda-de Sousa Dias M, Calafell-Monfort M, Braunegg G, Marques-Calvo MS (2013) J Appl Microbiol 114:1378

    PubMed  Google Scholar 

  37. Vega-Castro O, Contreras-Calderon J, Leon E, Segura A, Arias M, Perez L, Sobral PJA (2016) J Biotechnol 231:232

    CAS  PubMed  Google Scholar 

  38. Baikar V, Rane A, Deopurkar R (2017) Appl Biochem Biotechnol 183:241

    CAS  PubMed  Google Scholar 

  39. Tripathi L, Wu L-P, Chen J, Chen G-Q (2012) Microbial Cell Fact 11:44

    CAS  Google Scholar 

  40. Kumar P, Ray S, Patel SKS, Lee J-K, Kalia VC (2015) Int J Biol Macromol 78:9

    CAS  PubMed  Google Scholar 

  41. Zain NAM, Zargoun LMA, Elias NF, Wahab MFA, Suhaimi MS (2016) Sci Eng 78:75

    Google Scholar 

  42. Silverstein RM, Bassler GC, Morril TC (1991) Spectrometric identification of organic compounds, 5th edn. Wiley, Singapore

    Google Scholar 

  43. Vishnuvardhan SR, Thirumala M, Mahmood SK (2009) J Ind Microbiol Biotechnol 36:837

    Google Scholar 

  44. Tan G-YA, Chen C-L, Ge L, Wang L, Zhao L, Mo Y, Tan SN, Wang J-Y (2014). J Biosci Bioeng 117:379

    CAS  PubMed  Google Scholar 

  45. Chen G-Q (2010) In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 14–17

    Google Scholar 

  46. Rai R, Keshavrarz T, Roether JA, Boccaccini AR, Roy I (2011) Mat Sci Eng R 72:29

    Google Scholar 

  47. Pachekoski WM, Agnelli JAM, Belem LP (2009) Mat Res 12:159

    CAS  Google Scholar 

  48. Laycock B, Halley P, Pratt S, Werker A, Lant P (2013) Prog Polym Sci 39:397

    Google Scholar 

  49. Ansari S, Fatma T (2016) PLoS ONE 11(6):e0158168. https://doi.org/10.1371/journal.pone.0158168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Torres-Tello EV, Robledo-Ortíz JR, González-García Y, Pérez-Fonseca AA, Jasso-Gastinel CF, Mendizábal E (2017) Ind Crops Prod 99:117

    CAS  Google Scholar 

  51. Hernandez-Nunez E, Martinez-Gutierrez CA, Lopez-Cortes A, Aguirre-Macedo ML, Tabasco-Novelo C, González-Díaz MO, García-Maldonado JQ (2019) J Polym Environ 27:1105

    CAS  Google Scholar 

  52. Saratale GD, Oh M-K (2015) Int J Biol Macromol 80:627

    CAS  PubMed  Google Scholar 

  53. Cervantes-Uc J, Catzin J, Vargas I, Moguel F, Ramirez E (2014) J Appl Microbiol 117:1056–1065

    CAS  PubMed  Google Scholar 

  54. Kucera D, Pernicova I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V, Obruca S (2018) Biores Technol 256:552

    CAS  Google Scholar 

  55. Hong JW, Song HS, Moon YM et al (2019) Bioprocess Biosyst Eng 42:603

    CAS  PubMed  Google Scholar 

  56. Hassan MA, Bakhiet EK, Ali SG, Hussien HR (2016) J Appl Pharm Sci 6:46

    CAS  Google Scholar 

  57. Dhangdhariya JH, Dubey S, Trivedi HB, Pancha I, Bhatt JK, Dave BP, Mishra S (2015) Int J Bio Macromol 76:254

    CAS  Google Scholar 

  58. Liu Y, Huang S, Zhang Y, Xu F (2014) J Environ Sci 26:1453

    CAS  Google Scholar 

  59. Ganapathy K, Chidambaram K, Krishnan S, Perumal P, Ramasamy R (2016) Int J Biol Macromol 89:700

    Google Scholar 

  60. Acevedo F, Villegas P, Urtuvia V, Hermosilla J, Navia R, Seeger M (2018) Int J Biol Macromol 106:692

    CAS  PubMed  Google Scholar 

  61. Anbukarasu P, Sauageau D, Elias A (2015) Sci Rep 5:17884.

    PubMed  PubMed Central  Google Scholar 

  62. Kawaguchi Y, Doi Y (1990) FEMS Microbiol Lett 70:151

    CAS  Google Scholar 

  63. Bhagowati P, Pradhan S, Dash HR, Das S (2015) Biosci Biotechnol Biochem 79:1454

    CAS  PubMed  Google Scholar 

  64. Martínez-Gutiérrez CA, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A (2018) PeerJ 6:e4780. https://doi.org/10.7717/peerj.4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Director, CSIR-CFTRI for providing facilities to carry out the research work. Ms. Angelina Stanley would like to thank the funding agency of UGC-Maulana Azad National Fellowship, for financially supporting the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. N. Vijayendra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, A., Murthy, P.S.K. & Vijayendra, S.V.N. Characterization of Polyhydroxyalkanoate Produced by Halomonas venusta KT832796. J Polym Environ 28, 973–983 (2020). https://doi.org/10.1007/s10924-020-01662-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01662-6

Keywords

Navigation