Skip to main content
Log in

Analysis of the impact of organic waste on water quality to support the superintensive technology vaname shrimp cultivation expansion program

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The Pacific white or vaname shrimp (Litopenaeus vannamei) can now be cultivated using superintensive technology with stocking densities of 300–1200 shrimp/m3 and yields up to 100 tons/ha. However, this technology can produce nutrient-rich waste containing 20–30% of the nitrogen and phosphorus in shrimp feed. In aquaculture, feed is generally the largest source of organic pollution, adding to nutrient loads in coastal waters with negative impacts on ecosystems and human health. The purpose of this research was to evaluate the impact of organic waste from superintensive shrimp aquaculture on water quality, determine the water quality status, and estimate the carrying capacity for sustainable implementation of superintensive vaname shrimp farming technology in Labuange Bay, Indonesia. Results indicate that organic waste impacts included increased concentrations of nitrate, phosphate, total organic matter, and chemical oxygen demand; however all parameters were still within ranges tolerated by most marine organisms. Seawater of a quality suitable for use in superintensive shrimp cultivation ponds was found 800–1.600 m offshore during the wet season and 400–800 m offshore during the dry season. The recommended upper limit for intensive shrimp farming in Labuange Bay was 11 units of 3000 m2 each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alabaster JS, Lloyd R (1982) Water quality criteria for freshwater fish. Butterworth Scientific, London, p 345

    Google Scholar 

  • Amelia F, Yustiati A, Andriani Y (2021) Review of shrimp (Litopenaeus vannamei (Boone, 1931)) farming in Indonesia: management operating and development. World Sci News 158:145–158

    Google Scholar 

  • Anonymous (1991a) Metode pengujian kadar ammonium dalam air dengan alat spektrofotometer secara Nessler. SNI 06-2479-1991. (Accessed 4 Dec 2012). http://www.pu.go.id/satminkal/balitbang/sni/pdf/SNI%2006-2479-1991.pdf

  • Anonymous (1991b) Metode pengujian kadar nitrat dengan alat spektrofotometer secara brusin sulfat. SNI 06-2480-1991. (Accessed 4 Dec 2012). http://www.pu.go.id/satminkal/balitbang/sni/pdf/SNI%2006-2480-1991.pdf

  • Anonymous (1991c) Metode pengujian kadar ortofosfat total dalam air dengan alat spektrofotometer secara asam askorbat. SNI 06–2483–1991. (Accessed 4 December 2012). http://www.pu.go.id/satminkal/balitbang/sni/pdf/SNI%2006-2483-1991.pdf

  • Anonymous (2014) http://kkp.go.id/index.php/arsip/c/10724/Indonesia-Kuasai-Teknologi-Tambak-Udang-Ramah-Lingkungan/?category_id=34

  • Arrow K, Bolin B, Costanza R, Dasgupta P, Folke C, Holling CS, Pimentel D (1995) Economic growth, carrying capacity, and the environment. Ecol Econ 15(2):91–95

    Article  Google Scholar 

  • Balasubramanian R, Kannan L (2005) Physicochemical characteristics of the coral reef environs of the Gulf of Mannar biosphere reserve. India Int J Ecol Environ Sci 31(3):273–278

    Google Scholar 

  • Biao X, Zhuhong D, Xiaorong W (2004) Impact of the intensive shrimp farming on the water quality of the adjacent coastal creeks from eastern China. Mar Pollut Bull 48(5–6):543–553

    Article  PubMed  Google Scholar 

  • Board OS, and National Research Council (2000) Illuminating the hidden planet: the future of seafloor observatory science. National Academies Press, Washington

    Google Scholar 

  • Boesch DF (2002) Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuar Coasts 25(4):886–900

    Article  Google Scholar 

  • Boone L (1931) A collection of anomuran and macruran Crustacea from the Bay of Panama and the fresh waters of the Canal Zone. Bull Am Mus Nat Hist 63:137-189

    Google Scholar 

  • Boyd C, Clay J (2002) Evaluation of Belize aquaculture Ltd: a superintensive shrimp aquaculture system. FAO, USA, p 25

    Google Scholar 

  • Bricker SB, Ferreira JG, Simas T (2003) An integrated methodology for assessment of estuarine trophic status. Ecol Model 169(1):39–60

    Article  CAS  Google Scholar 

  • Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8(1):21–32

    Article  CAS  Google Scholar 

  • Briggs MRP, Smith SJ (1994) A nutrient budget of some intensive marine shrimp ponds in Thailand. Aquac Res 25(8):789–811

    Article  Google Scholar 

  • Brower JE, Zar JH (1977) Field and laboratory methods for general ecology. W.M.C. Brown Co. Publication, Doboque, Iowa, p 194

    Google Scholar 

  • Byron CJ, Costa-Pierce B (2013) Carrying capacity tools for use in the implementation of an ecosystems approach to aquaculture. Site Sel Carr Capacity Inland Coastal Aquac 21:87–101

    Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32(6):831–849

    Article  CAS  PubMed  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58(9):1255–1267

    Article  CAS  PubMed  ADS  Google Scholar 

  • Capone DG (2001) Marine nitrogen fixation: what’s the fuss? Curr Opin Microbiol 4(3):341–348

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gu T, Wang X, Wu X, Sun J (2022) Oxygen gradients shape the unique structure of picoeukaryotic communities in the Bay of Bengal. Sci Total Environ 814:152862

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chua TE, Paw JN, Garin FY (1989) The environmental impact of aquaculture and the effects of pollution on coastal aquaculture development in southeast Asia. Mar Pollut Bull 20:335–343

    Article  Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19(2):292–305

    Article  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27(2):261–266

    Article  CAS  Google Scholar 

  • Costello CT, Kenworthy WJ (2011) Twelve-year mapping and change analysis of eelgrass (Zostera marina) areal abundance in Massachusetts (USA) identifies statewide declines. Estuar Coasts 34(2):232–242

    Article  CAS  Google Scholar 

  • Debby AJS, Adiwilaga EM, Dahuri R, Muchsin I, Effendi H (2009) Spatial distribution of polluted areas and analysis of the load of organic material pollution in the waters of Ambon Bay in Torani. J Mar Fish Sci 19(2):96–106

    Google Scholar 

  • Dierberg F, Kiattisimkul W (1996) Issues, impacts, and implications of shrimp aquaculture in Thailand. Environ Manag 20(5):649–666

    Article  CAS  ADS  Google Scholar 

  • Dube MG (2003) Cumulative effect assessment in Canada: a regional framework for aquatic ecosystems. Environ Impact Assess Rev 23(6):723–745

    Article  Google Scholar 

  • El-Shebly AA, Gad HAM (2017) Effect of chronic ammonia exposure on growth performance, serum growth hormone (GH) levels and gill histology of Nile tilapia (Oreochromis niloticus). J Microbiol Biotechnol Res 1(4):183–197

    Google Scholar 

  • English SS, Wilkinson CC, Baker VV (1997) Survey manual for tropical marine resources. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Folke C, Kautsky N (1992) Aquaculture with its environment: prospects for sustainability. Ocean Coast Manag 17(1):5–24

    Article  Google Scholar 

  • Gavio B, Palmer-Cantillo S, Mancera JE (2010) Historical analysis (2000–2005) of the coastal water quality in San Andrés island, seaflower biosphere reserve. Caribb Colomb Mar Pollut Bull 60(7):1018–1030

    Article  CAS  Google Scholar 

  • Gilbert TW, Behymer TD, Casteneda HB (1982) Determination of dissolved oxygen in natural waters. Am Lab 14(3):119–134

    CAS  Google Scholar 

  • Gobler CJ, Baumann H (2016) Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol Lett 12(5):20150976

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowen RJ, Bradbury NB, Brown JR (1989) The use of simple models in assessing two of the interactions between fish farming and the marine environment. In: De Pauw N et al (eds) Aquaculture: a biotechnology in progress. European Aquaculture Society, Bredene, pp 1071–1080

    Google Scholar 

  • Guyondet T, Comeau LA, Bacher C, Grant J, Rosland R, Sonier R, Filgueira R (2015) Climate change influences carrying capacity in a coastal embayment dedicated to shellfish aquaculture. Estuar Coasts 38:1–26

    Article  Google Scholar 

  • Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Lewitus A (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth RW (2005) The development of policy approaches for reducing nitrogen pollution to coastal waters of the USA. Sci China, Ser C Life Sci 48:791–806

    Article  Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 5:364–376

    Article  ADS  Google Scholar 

  • Howarth RW, Swaney DP, Butler TJ, Marino R (2000) Rapid communication: climatic control on eutrophication of the Hudson river estuary. Ecosystems 3(2):210–215

    Article  Google Scholar 

  • Islam MS (2005) Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development. Mar Pollut Bull 50(1):48–61

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki N, Kushairi MRM, Nagao N, Yusoff F, Imai A, Kohzu A (2016) Release of nitrogen and phosphorus from aquaculture farms to Selangor river, Malaysia. Int J Environ Sci Dev 7(2):113

    Article  Google Scholar 

  • KLH (2004) Decree of the state minister of the environment No. 51 of 2004 concerning Indonesia Seawater Quality Standards

  • Kraemer SA, Ramachandran A, Perron GG (2019) Antibiotic pollution in the environment: from microbial ecology to public policy. Microorganisms 7(6):180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumaningtyas MA, Bramawanto R, Daulat A, Pranowo WS (2014) Natuna water quality in the transition season. J Aquat, Coastal Fish Sci 3(1):10–20

    Google Scholar 

  • Lalli CM, Parsons TM (1997) Biological oceanography, an introduction, 2nd edn. Elsevier Butterworth-Heinemann, Oxford

    Google Scholar 

  • Lundin RA, Soderholm A (1995) A theory of the temporary organization. Scand J Manag 11:437–455. https://doi.org/10.1016/0956-5221(95)00036-U

    Article  Google Scholar 

  • Mansur WM, Kamal M, Krisanti M (2013) Estimation of organic waste and carrying capacity of waters in an effort to manage coral reefs in the waters of Semak Daun island, Seribu islands. J Aquat, Coastal Fish Sci 2(3):141–153

    Google Scholar 

  • Meade JW (1989) Aquaculture management. AnAvi Book, Van Nostrand Reinhold, New York

    Book  Google Scholar 

  • Mustafa A, Paena M, Athirah A, Ratnawati E, Asaf R, Suwoyo HS, Septiningsih E (2022) Temporal and spatial analysis of coastal water quality to support application of whiteleg shrimp Litopenaeus vannamei intensive pond technology. Sustainability 14:2659

    Article  CAS  Google Scholar 

  • Mustafa A, Syah R, Paena M, Sugama K, Kontara EK, Muliawan I, Taukhid I (2023) Strategy for developing whiteleg shrimp (Litopenaeus vannamei) culture using intensive/super-intensive technology in Indonesia. Sustainability 15(3):1753

    Article  Google Scholar 

  • Nikinmaa M (2013) Climate change and ocean acidification—Interactions with aquatic toxicology. Aquat Toxicol 126:365–372

    Article  CAS  PubMed  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41(1):199–219

    Article  Google Scholar 

  • Olson RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074

    Article  CAS  ADS  Google Scholar 

  • Paena M, Syamsuddin R, Tandipayuk H (2020a) Analysis of phytoplankton community structure and its potential use as organic waste bioindicators in Labuange Bay. South Sulawesi J Aquac Res 15(2):129–139

    Google Scholar 

  • Paena M, Syamsuddin R, Tandipayuk H (2020b) Estimation of organic waste loads from shrimp pond superintensive that was disposed in the Labuange Bay waters. J Trop Mar Sci Technol 12(2):507–516

    Google Scholar 

  • Paerl HW, Pinckney JL, Fear JM, Peierls BL (1998) Ecosystem responses to internal and watershed organic matter loading: consequences for hypoxia in the eutrophying Neuse river estuary, north Carolina, USA. Mar Ecol Prog Ser 166:17

    Article  CAS  ADS  Google Scholar 

  • Paez-Osuna F, Guerrero-Galvan SR, Ruiz-Fernandez AC, Espinoza-Angulo R (1997) Fluxes and mass balance of nutrients in a semi-intensive shrimp farm in north-western Mexico. Mar Pollut Bull 34:290–297

    Article  CAS  Google Scholar 

  • Paez-Osuna F, Ruiz-Fernandez AC, Guerrero-Galvan SR (1998) The environmental impact of the shrimp aquaculture and the coastal pollution in Mexico. Mar Pollut Bull 36:65–75

    Article  CAS  Google Scholar 

  • Person-Le Ruyet J, Delbard C, Chartois H, Le Delliou H (1997) Toxicity of ammonia to turbot juveniles: effects on survival, growth and food utilisation. Aquat Living Resour 10(5):307–314

    Article  Google Scholar 

  • Price RM, Fourqurean JW (2006) Coastal groundwater discharge - an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569(1):23–36

    Article  CAS  Google Scholar 

  • Rurangwa E, Baumgartner U, Nguyen HM, van de Vis JW (2016) Aquaculture innovation in Vietnam (No. C097/16). Wageningen Marine Research, Yerseke

    Google Scholar 

  • Saalidong BM, Aram SA, Otu S, Lartey PO (2022) Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE 17(1):e0262117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satpathy KK, Mohanty AK, Natesan U, Prasad MVR, Sarkar SK (2010) Seasonal variation in physicochemical properties of coastal waters of Kalpakkam, east coast of India with special emphasis on nutrients. Environ Monit Assess 164:153–171

    Article  CAS  PubMed  Google Scholar 

  • Schwitzguébel JP, Wang H (2007) Environmental impact of aquaculture and countermeasures to aquaculture pollution in China. Environ Sci Pollut Res 14(7):452–462

    Article  Google Scholar 

  • Seymour EA, Bergheim A (1991) Towards a reduction of pollution from intensive aquaculture with reference to the farming of salmonids in Norway. Aquacult Eng 10(2):73–88

    Article  Google Scholar 

  • Sharp JH (1973) Size classes of organic carbon in seawater. Limnol Oceanogr 18(3):441–447

    Article  ADS  Google Scholar 

  • Shumway SE (1990) A review of the effects of algal blooms on shellfish and aquaculture. J World Aquac Soc 21(2):65–104

    Article  Google Scholar 

  • Siddiqui SA, Khan S, Farooqi MQU, Singh P, Fernando I, Nagdalian A (2022) Consumer behavior towards cultured meat: a review since 2014. Appetite 179:106314. https://doi.org/10.1016/j.appet.2022.106314

    Article  PubMed  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100(1–3):179–196

    Article  CAS  PubMed  Google Scholar 

  • Sridhar R, Thangaradjou T, Kumar SS, Kannan L (2006) Water quality and phytoplankton characteristics in the Palk Bay, southeast coast of India. J Environ Biol 27(3):561–566

    CAS  PubMed  Google Scholar 

  • Stenseth NC, Ottersen G, Hurrell JW, Belgrano A (2004) Marine eco-systems and climate variation. Oxford University Press, Oxford, p 267

    Google Scholar 

  • Stigebrandt A (2011) Carrying capacity: general principles of model construction. Aquac Res 42(s1):41–50

    Article  Google Scholar 

  • Sutrisyani, Rohani, S. (2009). Practical guide to brackish water quality analysis. Aquaculture Research Center. Marine and Fisheries Research Agency. Ministry of Marine Affairs and Fisheries, Jakarta. p 43

  • Suwoyo HS, Tahe S, Fahrur M (2015) Characteristics of super intensive vaname shrimp (Litopenaeus vannamei) pond sediment waste with different densities. In: Proceedings of the aquaculture technology innovation forum. p 901–913

  • UNESCO,WHO/UNEP (1992) Water quality assessments. Chapman and Hall Ltd, London. p 10–30

  • Wasielesky W, Atwood H, Stokes A, Browdy CL (2006) Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258(1):396–403. https://doi.org/10.1016/j.aquaculture.2006.04.030

    Article  Google Scholar 

  • Welch EB (1980) Ecological effects of waste water. Cambridge University Press, Cambridge p 337. https://doi.org/10.1177/030913338000400415

    Book  Google Scholar 

  • Williamson SC, Rheuban JE, Costa JE, Glover DM, Doney SC (2017) Assessing the impact of local and regional influences on nitrogen loads to Buzzards Bay. MA Front Mar Sci 3:279

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paena.

Ethics declarations

Conflict of interest

This article has no Conflict of Interest.

Additional information

Editorial responsibility: Maryam Shabani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paena, M., Taukhid, I., Mustafa, A. et al. Analysis of the impact of organic waste on water quality to support the superintensive technology vaname shrimp cultivation expansion program. Int. J. Environ. Sci. Technol. 21, 5603–5616 (2024). https://doi.org/10.1007/s13762-023-05386-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05386-7

Keywords

Navigation