Skip to main content
Log in

Identification of plantation areas for the endangered oriental sweetgum tree (Liquidambar orientalis Miller, 1768) in Türkiye

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Only two places in the world are home to the 2,500 hectares of fragmented forests of the tertiary relict oriental (Anatolian) sweetgum tree species (Liquidambar orientalis Miller, 1768): southwestern Türkiye and Rhodes Island (Greece). It is on the brink of extinction due to ongoing anthropogenic pressures. The goal of this study, which used the analytical hierarchy process as the approach, was to identify alternate in situ conservation places where the oriental sweetgum tree may persist owing to suitable living circumstances. The study area was chosen to be on southwestern Türkiye in light of historical records and current data from field studies and forest stands to analyze the potential plantation areas. Soil and climate factors with 0.3597 (36%) weight ratios were the best criteria to determine potential plantation areas. The two most important parameters in identifying the potential plantation area for the Anatolian sweetgum tree were alluvial, alluvial coast, and hydromorphic soils with a weight of 70.3% and average winter temperature of 6–10 °C with a weight of 66.87%. The area under the curve value was determined to be 0.750. According to the results, the most suitable areas for plantations were generally observed as riverine habitats where the species spread naturally during its history. The results are useful for forestry managers in developing successful plantation practices will alleviate the fragmentation and contribute to the species avoiding the genetic bottleneck, considering almost half of the entire study area has potential to develop medium- (488,448 ha, 41.2%) and high (95,400 ha, 8.1%)-level oriental sweetgum tree plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the manuscript.

References

  • Acatay A (1963) Sığla Ağacı’nın (Liquidambar orientalis Mill.) Türkiye’de Yayılışı, Yeni Tespit Edilen Liquidambar orientalis var. suber varyetesi ve Sığla Ağacı’na Musallat Olan Böcekler. Orman Entomolojisi ve Orman Koruma Kürsüsü Çalışmalarından, Faculty of Forestry, Istanbul University, pp10–56, Istanbul. (In Turkish)

  • Ahmad F, Rizvi J (2023) GIS modeling of environmental parameters for identification of landscape for expansion of biodiversity conservation, and greenery projects (a case study for Neom region, Saudi Arabia). Model Earth Syst Environ 9(2):2987–2992

    Article  Google Scholar 

  • Akıncı H, Yavuz Özalp A, Turgut B (2013) Agricultural land use suitability analysis using GIS and AHP technique. Comput Electron Agric 97:71–82

    Article  Google Scholar 

  • Akman Y, Ketenoğlu O, Kurt L (1992) Fethiye-Marmaris ve Bucak Çevrelerinde Yetişen Liquidambar orientalis Mill. Topluluklarının Floristik Yapısı. Doğa-Turkish Journal of Botany 16:273–286 ((In Turkish))

    Google Scholar 

  • Alan M, Kaya Z (2003) EUFORGEN Technical Guidelines for genetic conservation and use for oriental/Anatolian sweet gum (Liquidambar orientalis). International Plant Genetic Resources Institute, Rome, Italy

  • Ananda J, Herath G (2003) The use of Analytic Hierarchy Process to incorporate stakeholderpreferences into regional forest planning. Forest Policy Econ 5(2003):13–26

    Article  Google Scholar 

  • Areendran G, Raj K, Sharma A, Bora PJ, Sarmah A, Sahana M, Ranjan K (2020) Documenting the land use pattern in the corridor complexes of Kaziranga National Park using high resolution satellite imagery. Trees, Forests and People, Volume 2, December 2020, https://doi.org/10.1016/j.tfp.2020.100039

  • Arsalan MB, Şahin HT (2016) Unutulan Bir Orman Ürünü Kaynağı: Anadolu Sığla Ağacı (Liquidambar orientalis Miller). Journal of Bartın Faculty of Forestry 18(1):103–117 ((In Turkish))

    Google Scholar 

  • Bagaram BM, Mounir F, Lahssini S, Ponette Q (2016) Site Suitability Analysis for Cork Oak Regeneration Using GIS Based Multicriteria Evaluation Techniques in Maamora Forest-Morocco. Open Access Library J 3(3)

  • Bagherzadeh A (2018) Assessment of land suitability for Norway maple and black locust plantations in the northeast of Iran. J For Sci 64(3):129–138

  • Bascompte J, Possingham H, Roughgarden J (2002) Patchy populations in stochastic environments: critical number of patches for persistence. Am Nat 159:128–137

    Article  Google Scholar 

  • Batar AK, Watanabe T (2017) Kumar A (2017) Assessment of land-use/land-cover change and forest fragmentation in the Garhwal Himalayan Region of India. Environments 4:34. https://doi.org/10.3390/environments4020034

    Article  Google Scholar 

  • Bayram BÇ (2021) A sustainable forest management criteria and indicators assessment using fuzzy analytic hierarchy process. Environ Monitor Assess 193. Article number: 425

  • BGCI (2017) Plant Search. Botanic Gardens Conservation International, London. Available at: https://www.bgci.org/plant_search.php

  • Bravo-Bello JC, Martinez-Trinidad T, Romero-Sanchez ME, Valdez-Lazalde JR, Benavides-Meza H (2020) The analytic hierarchy process for selection of suitable trees for Mexico City. iForest 13: 541–547. DOI: https://doi.org/10.3832/ifor3481-013

  • Caudullo G, Welk E, San-Miguel-Ayanz J (2017) Chorological maps for the main European woody species. Data in Brief 12, 662-666. DOI: doi.org/10.1016/j.dib.2017.05.007 https://figshare.com/articles/Liquidambar_orientalis_chorology/11347805

  • Corbaci OL, Bilgili BC, Oner N, Ersahin S, Kasko-Arici Y (2019) Potential Use of Natural Turkish Sweetgum Species in Landscape Design in Türkiye. Fresenius Environmental Bulletin, 28, 2A/2019, pp1621–1626

  • Çavuş CZ, Koç T (2015) Çanakkale Boğazı Doğusunda Arazi Kullanım Uygunluğunun Yerleşme Açısından Analizi. Coğrafi Bilimler Dergisi 13(1):41–60 ((In Turkish))

    Article  Google Scholar 

  • Das S, Sarkar S, Kanungo DP (2022) GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya. Environ Monit Assess 194:234. https://doi.org/10.1007/s10661-022-09851-7

    Article  Google Scholar 

  • Dindaroglu T (2021) Determination of ecological networks for vegetation connectivity using GIS & AHP technique in the Mediterranean degraded karst ecosystems. J Arid Environ 188:104385

    Article  Google Scholar 

  • Dirik H (1986) Anadolu Sığlası (Liquidambar orientalis Mill.)’nın Gençleştirilmesi Üzerine Çalışmalar. MSc Thesis, The Institute of Science, Istanbul University, pp 18–36, Istanbul. (In Turkish)

  • EEA (2006) CORINE Land Cover (CLC) 2006 technical guidelines. Technical report of European Environment Agency, No 17/2007. 66 pp, ISBN: 978–92–9167–968–3

  • Efe A (1987) Studies on the morphological and palynological characteristics of Liquidambar orientalis Mill. J Faculty for Istanbul Univ 37(2):84–104 ((In Turkish))

    Google Scholar 

  • El Jazouli A, Barakat A, Khellouk R (2019) GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, vol. 6, no. 1, 24 Apr. 2019, p. NA. Gale Academic OneFile, link.gale.com/apps/doc/A583423244/AONE?u=anon~a435a41&sid=googleScholar&xid=1df84d14. Accessed on 9 April 2022

  • Eskandaria S, Behnamfar K, Pourghasemi HR (2022) Tiefenbacher JP (2022) Provision of eucalyptus wood farming potential map in Iran: an application of land cover, ecological, climatic, hydrologic, and edaphic analysis in a GIS-based fuzzy AHP framework. Ecol Ind 136:108621

    Article  Google Scholar 

  • Eslami A, Roshani M, Hassani M (2010) The application of GIS in selection of suitable species for afforestation in southern forest of Caspian Sea. J Environ Sci 4(3):223–226

    Google Scholar 

  • EUFORGEN (2009) Distribution map of Oriental/Anatolian sweetgum (Liquidambar orientalis). The webpage link (http://www.euforgen.org) was visited on 11.04.2021

  • Fahrig L (2002) Effect of habitat fragmentation on the extinction threshold: a synthesis. Ecol Appl 12:346–353

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. John Wiley, New York

    Google Scholar 

  • Forman RTT, Collinge SK (1995) The spatial solution to conserving biodiversity in landscapes and regions. In: DeGraaf RM, Miller RI (eds) Conservation of faunal diversity in forested landscapes. Chapman and Hall, London, pp 537–568

    Google Scholar 

  • Frankel OH (1981) Soule ME (1981) In Conservation and Evaluation. Cambridge University Press, Cambridge

    Google Scholar 

  • Gheshlaghi HA, Feizizadeh B, Blaschke B (2020) GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J Environ Plann Manage 63(3):481–499. https://doi.org/10.1080/09640568.2019.1594726

    Article  Google Scholar 

  • Gholizadeh A, Bagherzadeh A, Keshavarzib A (2019) Model application in evaluating land suitability for Oak and Pine forest plantations in Northeast of Iran. Gol Ecol Landscapes. https://doi.org/10.1080/24749508.2019.1633217

    Article  Google Scholar 

  • Güner A, Vural M, Duman H, Dönmez AA, Șağban H (1993) Günlük ağacı (Liquidambar orientalis Miller) Köyceğiz’deki Durum. The Karaca Arboretum Magazine II:33–42 ((In Turkish))

    Google Scholar 

  • Hashemi SA (2018) Ecological capability evaluation for afforestation and forest expansion using Geographic Information System (GIS) in management area of Caspian Sea. An Acad Bras Ciênc 90(4):3761–3768

    Article  CAS  Google Scholar 

  • Healey SP, Cohen WB, Yang Z, Kenneth Brewer C, Brooks EB, Gorelick N, Hernandez AJ, Huang C, Joseph Hughes M, Kennedy RE et al (2018) Mapping forest change using stacked generalization: an ensemble approach. Remote Sens Environ 204:717–728. https://doi.org/10.1016/j.rse.2017.09.029

    Article  Google Scholar 

  • Huş S (1949) Reçine ve Sığla Yağı Elde Etme Metotları. Ministry of Agriculture, Publications of General Directorate of Forestry, Special Edition-No: 36, 54 Pages, Ankara, Türkiye. (In Turkish)

  • IUCN (1997) 1997 IUCN Red List of Threatened Plants. IUCN – The World Conservation Union, Gland, Switzerland

  • Ismail MH (2009) Developing policy for suitable harvest zone using multi criteria evaluation and GIS-based decision support system. Int J Econ Financ 1:105–117

    Article  Google Scholar 

  • Ison JC, Blade MJ (2005) ROCPLOT: a generic software tool for ROC analysis and the validation of predictive methods. Appl Bioinf 4(2):131–135. https://doi.org/10.2165/00822942-200504020-00006

    Article  CAS  Google Scholar 

  • İktüeren A (1987) Sığla Ağacı’nın (Liquidambar orientalis Mill.) Doğal Yayılışı, Sığla Yağı Üretimi ve Pazarlaması. Publications of Forestry Research Institute of Turkish Republic. 33(2), No:66 (In Turkish)

  • Kalem S, Ürker O, İlemin Y (Eds.) (2022) Ecological and Socio-economic Effects of Major Forest Fires in The Mediterranean Region of Türkiye. Technic Reports of WWF-Türkiye & NATURA. 63 Pages, PrintWorld Publishing, Istanbul-Türkiye. (In Turkish). Web link: https://wwftr.awsassets.panda.org/downloads/ormanyangnlarweb.pdf?11960/Akdeniz-Bolgesindeki-Buyuk-Orman-Yarginlarinin-Ekolojik-ve-Sosyo-Ekonomik-Etkileri

  • Kanowski PJ (1997) Plantation forestry at the millennium. Discussion Paper for World Commission on Forests and Sustainable Development. 8 p

  • Karabulut A, Elbaşı F, Ustaoğlu S, Yatman D (2011) Türkiye büyük toprak grubu haritası, Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü Toprak Gübre ve Su Kaynakları Merkez Araştırma Enstitüsü Müdürlüğü, Mekanizasyon ve Bilişim Teknolojileri Bölümü, Ankara. (In Turkish)

  • Kavak S, Wilson B (2018) Liquidambar orientalis. The IUCN Red List of Threatened Species 2018: e.T62556A42326468. https://doi.org/10.2305/IUCN.UK.2018-1.RLTS.T62556A42326468.en. Downloaded on 24 March 2021

  • Khwarahm NR (2020) Mapping current and potential future distributions of the oak tree (Quercus aegilops) in the Kurdistan Region. Iraq Ecological Processes 9(1):56. https://doi.org/10.1186/s13717-020-00259-0

    Article  Google Scholar 

  • Krishnapillay B, Razak MAA (2001) commercial plantation strategy to reduce pressure on tropical forest resources. In: Proceedings of the international conference on ex situ and in situ conservation of commercial tropical trees, held on 11–13 June 2001, pp 387–404, Yogyakarta, Indonesia

  • Kurt L (2008) Anadolu Sığla Ağacı (Günlük Ağacı) Biyolojik Çeşitlilik Raporu. Özel Çevre Koruma Kurumu Başkanlığı, Ankara. (In Turkish)

  • Lavalle P, Spain AV, Blouin M, Brown GG (2016) Ecosystem engineers in a self-organized soil: a review of concepts and future research questions. Soil Sci 181(3/4). https://doi.org/10.1097/SS.0000000000000155

  • Malczewski J (2004) GIS based land use suitability analysis: a critical overview. Prog Plan 62:3–65

    Article  Google Scholar 

  • Malczewski J (2006) Integrating multi-criteria analysis and geographic information systems: the ordered weighted averaging (OWA) approach. Int J Environ Technol Manage 6(2):7–19

    Article  Google Scholar 

  • Mather AS (Ed) (1993). Afforestation: policies, planning and progress. Bellhaven Press. 223 p

  • Mengist W, Soromessa T, Feyisa GL (2022) Forest fragmentation in a forest Biosphere Reserve: Implications for the sustainability of natural habitats and forest management policy in Ethiopia. Resour Environ Sustain 8(1):1–13. https://doi.org/10.1016/j.resenv.2022.100058

    Article  Google Scholar 

  • Muğla MK, Türk T (2020) Detection of potential afforestation fields by analytical hierarchy process and geographical information systems. J Geodesy Geoinf 2:103–120

    Article  Google Scholar 

  • Myroniuk V, Kutia M, Sarkissian AJ, Bilous A, Liu S (2020) Regional-scale forest mapping over fragmented landscapes using global forest products and landsat time series classification. Remote Sens 12(1):187. https://doi.org/10.3390/rs12010187

    Article  Google Scholar 

  • Örtel E (1988) Sığla ormanlarımızın durumu. Ormancılık Araştırma Enstitüsü Dergisi, Cilt 34, Sayı 2, No: 68, 93–96. (In Turkish)

  • Özdağoğlu A, Özdağoğlu G (2007) Comparison of AHP and fuzzy AHP for the multicriteria decision making processes with linguistic evaluations. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 6(11):65–85

    Google Scholar 

  • Özkil A, Ürker O, Zeydanlı U (2017) Art in Sweetgum Forests (Sığla Ormanlarında Sanat). Nature Conservation Center (Doğa Koruma Merkezi), 161 Syf., Dumat Ofset, ISBN: 978–605–82749–0–7. Ankara. (Turkish&English)

  • Rashidi F, Sharifian S (2022) A comparative analysis of three multi-criteria decision-making methods for land suitability assessment. Environ Monit Assess 194(9):657

    Article  Google Scholar 

  • Rezaei-Moghaddam Karami E, Gibson J (2008) Conceptualizing sustainable agriculture: Iran as an illustrative case, January 2006. J Sustain Agric 27(3):25–56. https://doi.org/10.1300/J064v27n03_04unst

  • Rivers M, Beech E, Barstow M (2017) Liquidambar orientalis. The IUCN Red List of Threatened Species 2017

  • Sari F (2021) Forest fire susceptibility mapping via multi-criteria decision analysis techniques for Mugla, Turkey: a comparative analysis of VIKOR and TOPSIS. For Ecol Manage 480:118644

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process: planning, priority setting and resource allocation. McGraw-Hill, New York

    Google Scholar 

  • Saaty TL (2001) Decision making with dependence and feedback: the analytic network process, 2nd edn. PRWS Publications, Pittsburgh PA

    Google Scholar 

  • Saaty TL (2012) Decision making for leaders: the analytic hierarchy process for decisions in a complex world, Third Revised. RWS Publications, Pittsburgh

    Google Scholar 

  • Saaty TL, Vargas LG (1991) Prediction. Kluwer Academic Publishers, Dordrecht, Projection and Forecasting, p 25

    Google Scholar 

  • Seyed HM, Alireza SA (2017) A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems. Mater Des 121:237–253

    Article  Google Scholar 

  • Sharma S (2007) Roy PS (2007) Forest fragmentation in the Himalaya: A Central Himalayan case study. Int J Sustain Dev World Ecol 14:201–210

    Article  Google Scholar 

  • Sivrikaya F (2022) Küçük Ö (2022) Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Eco Inform 68:101537

    Article  Google Scholar 

  • Sivrikaya F, Özcan GE, Enez K, Sakici OE (2022) Comparative study of the analytical hierarchy process, frequency ratio, and logistic regression models for predicting the susceptibility to Ips sexdentatus in Crimean pine forests. Eco Inform 71:101811

    Article  Google Scholar 

  • Sivrikaya F, Özcan GE, Enez K (2023) Predicting the susceptibility to Pityokteines curvidens using GIS with AHP and MaxEnt models in fir forests, Editors: De Felice, F., Petrillo, A. In: Analytic Hierarchy Process - Models, Methods, Concepts, and Applications, IntechOpen.

  • Srivastava R (2016) Tyagi R (2016) Wildlife corridors in India: viable legal tools for species conservation. Environ Law Rev 18(3):205–223

    Article  Google Scholar 

  • Şen G, Güngör E (2018) The use of analytic hierarchy process method in choosing the best tree type for industrial plantations: the case of Kastamonu Province. Turkish Journal of Forestry 19(1):63–75

    Google Scholar 

  • Taşkın BG, Taşkın V, Küçükakyüz K, Varol Ö, Çöl B, Arslan T (2008) Esterase Polymorphisms in Relict Endemic Liquidambar orientalis Mill. var. orientalis and L. orientalis Mill. var. integriloba Fiori Populations in Türkiye. Journal of Cell and Molecular Biology, 6(2):137–146. – 2008

  • Thielges BA (2001) Foreword. Proceedings of the International Conference on ex situ and in situ Conservation of Commercial Tropical Trees, held on 11–13 June 2001, Pages.2–3, Yogyakarta, Indonesia.

  • Torlak H (2012) Öte Dünyadaki Ruhlarla Özdeşleşmiş Sığla Ağacı (Sweetgum Tree Identified with Spirits of the Other World). Bilim ve Gelecek Dergisi, No 90. Web link: http://www.bilimvegelecek.com.tr/?goster=1476 (In Turkish)

  • Ürker O, Benzeyen ST (2020) The Importance of Endangered Anatolian (Oriental) Sweetgum Forests for the Bird Species. Research Article. International Journal of Nature and Life Science (IJNLS). 4(1), 14–25pp., Web link: https://dergipark.org.tr/tr/pub/ijnls/issue/54485/677936

  • Ürker O, Yılmaz T, Öztük Ş, Çobanoğlu N (2014a) Investigation of anatolian sweetgum forests in the scope of environmental sociology. J Sociol Res 17(2):153–187 ((In Turkish))

    Google Scholar 

  • Ürker O, Yorulmaz T (2020) Determination of the bat (Chiroptera) activity in the Anatolian sweetgum forests inside Köyceğiz-Dalyan Specially Protected Area. (General Directorate of Forestry of Turkish Republic) Turkish J For Res 7(1): 88–103, Ankara-TÜRKİYE. https://doi.org/10.17568/ogmoad.651223 (In Turkish)

  • Ürker O, İlemin Y (2019) A pioneer study on the wildlife properties of anatolian sweetgum forests, a case assesment on mammalian diversity in terms of ecosystem integrity. Research Article. Fresenius Environmental Bulletin, vol 28–No. 7/2019 pp 5474–5480

  • Ürker O, Lise Y (2018) Examination of sensitive forests concept over oriental (anatolian) sweetgum forests in nature conservation. Anatolian J For Res 4(1):1–10, Çankırı-TÜRKİYE. (In Turkish)

  • Ürker O, Çobanoğlu N (2017) Çevre Etiği Bağlamında Anadolu Sığla Ormanları (Anatolian Sweetgum Forests in Terms of Environmental Ethics). 204 Pages. ISBN: 978–3–659–94199–3. LAP -Lambert Academic Publishing, Germany, 2017. (In Turkish)

  • Ürker O, Yalçın S (2011) If It Extincts in Köyceğiz, It Extincts All Over the World Too: Sweetgum Forests. TUBITAK Science and Technic Magazine, Number 521, pp 58–63. April 2011, Ankara-TÜRKİYE. (In Turkish)

  • Ürker O, İlemin Y, Bulut Ş, Ada E (2015) Anadolu Sığla Ormanları (Liquidambar orientalis)’nın Biyo-Ekolojisi ve Bu Ormanlardaki Yaban Hayatı Özellikleri Hakkında Güncel Bir Değerlendirme. 12th National Congress of Ecology and Environment, Mugla Sitki Kocman University, Abstract Book, pp 87–89. September 14–17, 2015, Mugla-TÜRKİYE. (In Turkish)

  • Ürker O, Yılmaz T, Öztürk Ş, Çobanoğlu N (2014) Anatolian Sweetgum Forests in Terms of Environmental Sociology. Journal of Sociological Research (ISSN:1302–4426), vol 17, No. 2, pp 152–187, Ankara-TÜRKİYE. (In Turkish)

  • Vogt P, Riitters K (2017) GuidosToolbox: universal digital image object analysis. Eur J Remote Sens 50(1):352–361

    Article  Google Scholar 

  • Wakie T, Hoag D, Evangelista PH, Luizza M (2016) Is control through utilization a cost effective Prosopis juliflora management strategy? J Environ Manage 168:74–86. https://doi.org/10.1016/j.jenvman.2015.11.054

    Article  Google Scholar 

  • Wang P, Zhu Z, Wang Y (2016) A novel hybrid MCDM model combining the SAW, TOPSIS and GRA methods based on experimental design. Inf Sci 345:27–45

    Article  Google Scholar 

  • Wilcove DS, McClellan CH, Dobson AP (1986) Habitat fragmentation in the temperate zone. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA, pp 237–256

    Google Scholar 

  • Williams JT (1991) For Chron 1991:68

    Google Scholar 

  • Worldclim (2021) http://worldclim.org/ The webpage had been visited on 12 December 2021

  • Yağcı C, İşcan F (2021) GIS-based site suitability analysis of afforestation in Konya province, Türkiye. Turkish J Geogr Inf Syst 3(2):89–95

    Google Scholar 

  • Yaltırık F, Efe A (2000) Plate 386. Liquidambar orientalis. Curtis's Botanical Magazine 17(2)

  • Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Türkiye. Dissertation. Melbourne: Department of Geomatics, The University of Melbourne; p 423

Download references

Acknowledgements

We thank Ali Kaya (NATURA) for his assistance in the field and Giovanni Caudullo (Senior GIS analyst at the European Commission's Joint Research Centre) for his technical advice during the study.

Funding

The study was partly supported by the Rufford Foundation (Project ID 33742-D).

Author information

Authors and Affiliations

Authors

Contributions

AG performed GIS analyses and AHP modeling. OÜ weighted the parameters to be analyzed in the light of the bioecological characteristics of the species and provided local control of the results obtained and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to O. Ürker.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ürker, O., Günlü, A. Identification of plantation areas for the endangered oriental sweetgum tree (Liquidambar orientalis Miller, 1768) in Türkiye. Int. J. Environ. Sci. Technol. 21, 153–168 (2024). https://doi.org/10.1007/s13762-023-05243-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-05243-7

Keywords

Navigation