Skip to main content

Advertisement

Log in

Valorization of coal fly ash (CFA): a multi-industry review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Coal fly ash (CFA) management has become a global environmental concern due to their impact on the environment and the quantities of the waste generated. However, the utilization of CFA as feedstock in industrial processes is considered a promising option for managing the waste sustainably. The physical, chemical and mineralogical properties of CFA such as morphology, surface area, porosity, and chemical composition (silica, alumina, iron oxide, titania, etc.) makes it a suitable feedstock for several industrial processes. Few reports have attempted to summarize the utilization of the waste solely in individual sectors. However, little is known about the application of the waste in other sectors such as metallurgy, rare earth metals recovery and oil and gas. A multi-industry review of CFA utilization is needed to fully appreciate the myriad uses of the waste and identify new knowledge gaps. This review exposes the interconnections between different utilization options and identifies research gaps and new possible uses. In addition to the utilization of CFA across multiple industries, the current work also highlights the regulations and health implications associated with management of the waste. The findings give insight about how existing utilization options can be improved, identifies new sectors where the waste can be applied and exposes knowledge gaps to enhance research in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

( Adopted from (Hower et al. 2017))

Fig. 2

(Adopted from (Asokan et al. 2005))

Fig. 3

(Adopted from (Chen et al. 2010))

Similar content being viewed by others

References

  • Acar I, Atalay MU (2016) Recovery potentials of cenospheres from bituminous coal fly ashes. Fuel 180:97–105

    Article  CAS  Google Scholar 

  • Adamczuk A, Kołodyńska D (2015) Equilibrium, thermodynamic and kinetic studies on removal of chromium, cop- per, zinc and arsenic from aqueous solutions onto fly ash coated by chitosan. Chem Eng J 274:200–212

    Article  CAS  Google Scholar 

  • Ahubelem N, Shahabi K, Moghtaderi B, Altarawneh M, Dlugogorski BZ, Page AJ (2015) Formation of chlorobenzenes by oxidative thermal decomposition of 1,3- dichloropropene. Combust Flame 162:2414–2421

    Article  CAS  Google Scholar 

  • Akhai S, Sharma V (2019) Trends in utilization of coal fly ash in India: a review. J Eng Des Anal 2(1):12–16

    Google Scholar 

  • Aldahri T, Behin J, Kazemian H, Rohani S (2017) Effect of microwave irradiation on crystal growth of zeolitized coal fly ash with different solid/liquid ratios. Adv Powder Technol 28:2865–2874

    Article  CAS  Google Scholar 

  • Al-harahsheh MS, Al-makhadmeh L, Hararah M, Mahasneh M (2015) Fly ash based geopolymer for heavy metal removal : a case study on copper removal. J Environ Chem Eng 3:1669–1677

    Article  CAS  Google Scholar 

  • Almandoz MC, Pagliero CL, Ochoa NA, Marchese J (2015) Composite ceramic membranes from natural aluminosilicates for microfiltration applications. Ceram Int 41:5621–5633

    Article  CAS  Google Scholar 

  • Al-zboon K, Al-harahsheh MS, Hani BF (2011) Fly ash-based geopolymer for Pb removal from aqueous solution. J Hazard Mater 188:414–421

    Article  CAS  Google Scholar 

  • Arandiyan H, Chang H, Liu C, Peng Y, Li J (2013a) Dextrose-aided hydrothermal preparation with large surface area on 1D single-crystalline perovskite La0.5Sr0.5CoO3 nanowires without template: highly catalytic activity for methane combustion. J Mol Catal A Chem 378:299–306

    Article  CAS  Google Scholar 

  • Arandiyan H, Dai H, Deng J, Wang Y, Xie S, Li J (2013b) Dual-templating synthesis of three-dimensionally ordered macroporous La0.6Sr0.4MnO3-supported Ag nanoparticles: controllable alignments and super performance for the catalytic combustion of methane. Chem Commun 49(91):10748–10750

    Article  CAS  Google Scholar 

  • Asl SMH, Ghadi A, Baei MS, Javadian H, Maghsudi M, Kazemian H (2018) Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: a review. Fuel 217:320–342

    Article  Google Scholar 

  • Asokan P, Saxena M, Asolekar SR (2005) Coal combustion residues—environmental implications and recycling potentials. Resour Conserv Recycl 43:239–262

    Article  Google Scholar 

  • Awoyemi O, Adeleke E, Dzantor EK (2019) Arbuscular mycorrhizal fungi and exogenous glutathione mitigate coal fly ash (CFA)-induced phytotoxicity in CFA-contaminated soil. J Environ Manag 237:449–456

    Article  CAS  Google Scholar 

  • Bakharev T (2005) Geopolymeric materials prepared using class F fly ash and elevated temperature curing. Cem Concr Res 35:1224–1232

    Article  CAS  Google Scholar 

  • Bartoňová L, Juchelková D, Klika Z, Čech B (2011) On unburned carbon in coal ash from various combustion units. World Acad Sci Eng Technol 76:352–355

    Google Scholar 

  • Belardi G, Ippolito N, Piga L, Serracino M (2014) Investigation on the status of rare earth elements contained in the powder of spent fluorescent lamps, vol 591. Elsevier BV, Amsterdam, pp 22–30

    Google Scholar 

  • Bhatt A, Priyadarshini S, Acharath Mohanakrishnan A, Abri A, Sattler M, Techapaphawit S (2019a) Physical, chemical, and geotechnical properties of coal fly ash: a global review. Case Stud Constr Mater 11:e00263

    Google Scholar 

  • Bhatt A, Priyadarshini S, Acharath A, Abri A, Sattler M, Techapaphawit S (2019b) Case studies in construction materials physical, chemical, and geotechnical properties of coal fly ash : a global review. Case Stud Constr Mater 11:e00263. https://doi.org/10.1016/j.cscm.2019.e00263

    Article  Google Scholar 

  • Biernacki JJ, Vazrala AK, Leimer HW (2008) Sintering of a class F fly ash. Fuel 87:782–792

    Article  CAS  Google Scholar 

  • Binnemans K, Tom P, Blanpain B, Gerven TV, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22

    Article  CAS  Google Scholar 

  • Blanco F, Garcia MP, Ayala J (2005) Variation in fly ash properties with milling and acid leaching. Fuel 84:89–96

    Article  CAS  Google Scholar 

  • Blanco F, Garcia MP, Ayala J, Mayoral G, Garcia MA (2006) The effect of mechanically and chemically activated fly ashes on mortar properties. Fuel 85:2018–2026

    Article  CAS  Google Scholar 

  • Blissett RS, Rowson NA (2012) Review article a review of the multi-component utilisation of coal fly ash. Fuel 97:1–23

    Article  CAS  Google Scholar 

  • Borer LL (2000) Experiments with aspirin. J Chem Educ 77(3):354–355

    Article  CAS  Google Scholar 

  • Bose CC, Fairchild B, Jones T, Gul A, Ghahfarokhi RB (2015) Application of nanoproppants for fracture conductivity improvement by reducing fl uid loss and packing of micro-fractures. J Nat Gas Sci Eng 9:1–8

    Google Scholar 

  • Cao D, Selic E, Herbell J-D (2008) Utilization of fly ash from coal-fired power plants in China. J Zhejiang Univ Sci A 9(5):681–687

    Article  CAS  Google Scholar 

  • Chakhmouradian AR, Wall F (2012) Rare earth elements : minerals, mines, magnets. Elements 8:333–340

    Article  CAS  Google Scholar 

  • Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H (2010) Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem Eng J J 158:616–622

    Article  CAS  Google Scholar 

  • Chen J, Yuan B, Shi J, Yang JE, Fu M (2018) Reduced graphene oxide and titania nanosheet cowrapped coal fly ash microspheres alternately as a novel photocatalyst for water treatment. Catal Today 315:247–254

    Article  CAS  Google Scholar 

  • Chindaprasirt P, Jaturapitakkul C, Chalee W, Rattanasak U (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manag 29:539–543

    Article  CAS  Google Scholar 

  • Dai S, Zhao L, Peng S, Chou CL, Wang X, Zhang Y, Sun Y (2010) Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. Int J Coal Geol 81(4):320–332

    Article  CAS  Google Scholar 

  • Dash S, Chaudhuri H, Gupta R, Nair UG (2018) Adsorption study of modified coal fly ash with sulfonic acid as a potential adsorbent for the removal of toxic reactive dyes from aqueous solution: kinetics and thermodynamics. Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.05.017

    Article  Google Scholar 

  • Diaz EI, Allouche EN, Eklund S (2010) Factors affecting the suitability of fly ash as source material for geopolymers. Fuel 89:992–996

    Article  CAS  Google Scholar 

  • Ding J, Ma S, Shen S, Xie Z, Zheng S, Zhang Y (2016) Research and industrialization progress of recovering alumina from fly ash : a concise review. Waste Manag 60(June):375–387

    Google Scholar 

  • Duan P, Yan C, Zhou W, Ren D (2016) Development of fly ash and iron ore tailing based porous geopolymer for removal of Cu(II) from wastewater. Ceram Int 42:13507–13518

    Article  CAS  Google Scholar 

  • Dzantor KE, Adeleke E, Kankarla V, Ogunmayowa O, Hui D (2015) Using coal fly ash in agriculture: combination of fly ash and poultry litter as soil amendments for bioenergy feedstock production. Coal Combust Gasif Prod 7:33

    Google Scholar 

  • EGAT (2010) Personal communication with Mae Moh power plant, Thailand. Discussion notes with Mae Moh authrity during site visit made on 23–24 September 2011

  • Erickson BE (2018) From coal, a new source of rare earths. Am Chem Soc 96(28). Retrieved from https://cen.acs.org/materials/inorganic-chemistry/coal-new-source-rare-earths/96/i28

  • Ewulonu CM, Igwe IO, Onyeagoro GN (2016) Performance of local clay—titanuim dioxide core—shell extender pigments in alkyd paints. Adv Nanoparticles 5:90–102

    Article  CAS  Google Scholar 

  • Eze CP, Nyale SM, Akinyeye RO, Gitari WM, Akinyemi SA, Fatoba OO, Petrik LF (2013) Chemical, mineralogical and morphological changes in weathered coal fly ash: a case study of a brine impacted wet ash dump. J Environ Manag 129:479–492

    Article  CAS  Google Scholar 

  • Feng Y, Wang K, Yao J, Webley PA, Smart S, Wang H (2013) Effect of the addition of polyvinylpyrrolidone as a pore-former on microstructure and mechanical strength of porous alumina ceramics. Ceram Int 39(7):7551–7556

    Article  CAS  Google Scholar 

  • Flores Y, Flores R, Alvarez AG (2008) Heterogeneous catalysis in the fenton-type system reactive black 5/H2O2. J Mol Catal A Chem 281:184–191

    Article  CAS  Google Scholar 

  • Franus W, Wiatros-Motyka MM, Wdowin M (2015) Coal fly ash as a resource for rare earth elements. Environ Sci Pollut Res 22(12):9464–9474. https://doi.org/10.1007/s11356-015-4111-9

    Article  CAS  Google Scholar 

  • Ghanbari E, Dehghanpour H (2016) The fate of fracturing water: a field and simulation study. Fuel 163:282–294

    Article  CAS  Google Scholar 

  • Ghazali N, Muthusamy K, Wan Ahmad S (2019) Utilization of fly ash in construction. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/601/1/012023

    Article  Google Scholar 

  • Gitari MW, Akinyemi SA (2018) Introductory chapter: coal fly ash and its application for remediation of acid mine drainage, coal fly ash beneficiation-treatment of acid mine drainage with coal fly ash. In: Akinyemi S, Gitari M (eds) Beneficiation-treatment of acid mine drainage with coal fly ash. InTech, London

    Google Scholar 

  • Gupta V, Pathak DK, Siddique S, Kumar R, Chaudhary S (2020) Study on the mineral phase characteristics of various Indian biomass and coal fly ash for its use in masonry construction products. Constr Build Mater 235:117413. https://doi.org/10.1016/j.conbuildmat.2019.117413

    Article  CAS  Google Scholar 

  • Harkness JS, Ruhl LS, Millot R, Kloppman W, Hower JC, Hsu-kim H, Vengosh A (2015) Lithium isotope fingerprints in coal and coal combustion residuals from the United States. Procedia Earth Planet Sci 13:134–137

    Article  CAS  Google Scholar 

  • Hatch GP (2012) Dynamics in the global market for rare earths. Elements 8:341–346

    Article  Google Scholar 

  • Hower JC, Groppo JG, Graham UM, Colin R, Kostova IJ, Maroto-valer MM, Dai S (2017) Coal-derived unburned carbons in fly ash: a review. Int J Coal Geol 179:11–27

    Article  CAS  Google Scholar 

  • Izquierdo M, Moreno N, Font O, Querol X, Alvarez E (2008) Influence of the co-firing on the leaching of trace pollutants from coal fly ash. Fuel 87:1958–1966

    Article  CAS  Google Scholar 

  • Jain M, Dwivedi A (2014) Fly ash–waste management and overview : a review. Recent Res Sci Technol 6(1):30–35

    Google Scholar 

  • Jain D, Rani A (2011) MgO enriched coal fly ash as highly active heterogeneous base catalyst for claisen-schmidt condensation reaction. Am Chem Sci J 1(2):37–49

    Article  CAS  Google Scholar 

  • Jala S, Goyal D (2006) Fly ash as a soil ameliorant for improving crop production—a review. Biores Technol 97(9):1136–1147

    Article  CAS  Google Scholar 

  • Jayaranjan MLD, van Hullebusch ED, Annachhatre AP (2014) Reuse options for coal fired power plant bottom ash and fly ash. Rev Environ Sci Biotechnol 13:467–486

    Article  CAS  Google Scholar 

  • Ji L, Yu H, Wang X, Grigore M, French D, Gözükara M, Zeng M (2016) CO2 sequestration by direct mineralisation using fly ash from Chinese Shenfu. Fuel Process Technol 156:429–437

    Article  Google Scholar 

  • Joo H, Raj H, Hee J, Jung N, Sang C (2014) Fabrication of multifunctional TiO2–fly ash/polyurethane nanocomposite membrane via electrospinning. Ceram Int 40(2):3023–3029

    Article  Google Scholar 

  • Kastner RJ, Das KC, Buquoi Q, Melear ND (2003) Low temperature catalytic oxidation of hydrogen sulfide and methanethiol using wood and coal fly ash. Environ Sci Technol 37:2568–2574

    Article  CAS  Google Scholar 

  • Khalesi A, Arandiyan HR, Parvari M (2008) Production of syngas by CO2 reforming on Mxla 1-xNi0.3Al0.7O3-d (M=Li, Na, K) catalysts. Ind Eng Chem Res 47(16):5892–5898

    Article  CAS  Google Scholar 

  • Khatri C, Rani A (2008) Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel 87(13–14):2886–2892

    Article  CAS  Google Scholar 

  • Khatri C, Jain D, Rani A (2010a) Fly ash-supported cerium triflate as an active recyclable solid acid catalyst for Friedel–Crafts acylation reaction. Fuel 89(12):3853–3859

    Article  CAS  Google Scholar 

  • Khatri C, Mishra MK, Rani A (2010b) Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions. Fuel Process Technol 91(10):1288–1295

    Article  CAS  Google Scholar 

  • Khatri C, Rani A (2007) Green catalytic process for aspirin synthesis using fly ash as heterogeneous solid acid catalyst. Indian Patent No. 1980/DEL/2007

  • Kizgut S, Cuhadaroglu D, Samanli S (2010) Stirred grinding of coal bottom ash to be evaluated as a cement additive. Energy Sources Part A 32:1529–1539

    Article  CAS  Google Scholar 

  • Kuriakose G, Nagaraju N (2004) Selective synthesis of phenyl salicylate (salol) by esterification reaction over solid acid catalysts. J Mol Catal A Chem 223:155–159

    Article  CAS  Google Scholar 

  • Levandowski J, Kalkreuth W (2009) Chemical and petrographical characterization of feed coal, fly ash and bottom ash from the Figueira power plant, Paraná, Brazil. Int J Coal Geol 77(3–4):269–281

    Article  CAS  Google Scholar 

  • Li X, Ma X, Zhang S, Zheng E (2013) Mechanical properties and microstructure of class C fly ash-based geopolymer paste and mortar. Materials 6(4):1485–1495

    Article  CAS  Google Scholar 

  • Little MR, Adell V, Boccaccini AR, Cheeseman CR (2008) Production of novel ceramic materials from coal fly ash and metal finishing wastes. Resour Conserv Recycl J 52:1329–1335

    Article  Google Scholar 

  • López-Antón MA, Díaz-Somoano M, Spears DA, Martínez-Tarazona MR (2006) Arsenic and selenium capture by fly ashes at low temperature. Environ Sci Technol 40(12):3947–3951

    Article  Google Scholar 

  • Manchanda R (2015) A general poro-elastic model for pad-scale fracturing of horizontal wells (Doctoral dissertation)

  • Manz OE (1997) World wide production of coal ash and utilization in concrete and other products. Fuel 76:691–696

    Article  CAS  Google Scholar 

  • Mardon SM, Hower JC, Keefe JMKO, Marks MN, Hedges DH (2008) Coal combustion by-product quality at two stoker boilers: Coal source versus fly ash collection system design. Int J Coal Geol J 75:248–254

    Article  CAS  Google Scholar 

  • Matsunaga T, Kim JK, Hardcastle S, Rohatgi PK (2002) Crystallinity and selected properties of fly ash particles. Mater Sci Eng 325:333–343

    Article  Google Scholar 

  • Matzenbacher CA, Garcia ALH, dos Santos MS, Nicolau CC, Premoli S, Corrêa DS, de Souza CT, Delgado TV (2017) DNA damage induced by coal dust, fly and bottom ash from coal combustion evaluated using the micronucleus test and comet assay in vitro. J Hazard Mater 324:781–788

    Article  CAS  Google Scholar 

  • Mirafzal GA, Summer JM (2000) Microwave irradiation reactions: synthesis of analgesic drugs. J Chem Educ 77(3):356–357

    Article  CAS  Google Scholar 

  • Mushtaq F, Zahid M, Bhatti IA, Nasir S, Hussain T (2019) Possible applications of coal fly ash in wastewater treatment. J Environ Manag 240:27–46

    Article  CAS  Google Scholar 

  • Namburath M, Joshi G, Cholemari M, Shet C, Sreekrishnan TR, Veeravalli S (2015) Feasibility Study of indigenously developed fly ash membrane in municipal wastewater treatment. Aquat Procedia 4:1492–1499

    Article  Google Scholar 

  • Narkhede HP, More UB, Dalal DS, Pawar NS, More DH, Mahulikar PP (2007) Fly-ash-supported synthesis of 2-mercaptobenzothiazole derivatives under microwave irradiation. Synth Commun 37:573–577

    Article  CAS  Google Scholar 

  • Oueralt I, Ouerol X, Lpez-soler A, Plana F (1997) Use of coal fly ash for ceramics : a case study for a large Spanish power station. Fuel 76(8):787–791

    Article  Google Scholar 

  • Peng Y, Song G (2000) Heteropolyacid-catalyzed synthesis of aspirin. Chem Educ 5:144

    Article  CAS  Google Scholar 

  • Praharaj S (2009) Processing and characterization of fly ash–quartz coatings.

  • Prezzi M, Kim B (2008) Compaction characteristics and corrosivity mixtures of Indiana class-F fly and bottom ash. Constr Build Mater 22(4):694–702

    Article  Google Scholar 

  • Rani A, Khatri C, Hada R (2013) Fly ash supported scandium triflate as an active recyclable solid acid catalyst for Friedel–Crafts acylation reaction. Fuel Process Technol 116:366–373

    Article  CAS  Google Scholar 

  • Reitz W (2008) A review of: “Organic Coatings—Science and Technology, 3rd edition, Z.W. Wicks, Jr., F.N. Jones, S.P. Pappas, and D.A. Wicks.” Mater Manuf Process 23(5):544–544

    Article  CAS  Google Scholar 

  • Robl TL, Oberlink AE (2018) Beneficiated fly ash as a micro proppant for oil and gas production from fracking. https://worldofcoalash.org/wpcontent/uploads/2018/11/7

  • Robl TL, Oberlink AE (2019) Proppant for use in hydraulic fracturing to stimulate a well. https://uknowledge.uky.edu/caer_patents/57%0A

  • SACE, Southern Alliance for Clean Energy (2020) Coal ash reuse. Retrieved October 7, 2020, from http://www.southeastcoalash.org/about-coal-ash/coal-ash-reuse

  • Sale LY, Naeth MA, Chanasyk DS (1996) Growth response of barley on unweathered fly ash-amended soil. J Environ Qual 25:684–691

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2010) Science and technology for water purification in the coming decades. Nanosci Technol Collect Rev Nat J 452(3):337–346

    Google Scholar 

  • Snellings R, Mertens G, Elsen J (2012) Supplementary cementitious materials. Rev Mineral Geochem 7(74):211–278

    Article  Google Scholar 

  • Sokolar R, Nguyen M (2018) The fly ash of class C for ceramic technology. IOP Conf Ser Mater Sci Eng 385(1):012053

    Article  Google Scholar 

  • Sonar SK, Niphadkar PS, Mayadevi S, Joshi PN (2014) Preparation and characterization of porous fly ash/NiFe2O4 composite: promising adsorbent for the removal of Congo red dye from aqueous solution. Mater Chem Phys 148:371–379

    Article  CAS  Google Scholar 

  • Tenenbaum DJ (2009) TRASH OR TREASURE?: putting coal combustion waste to work. Environ Health Perspect. https://doi.org/10.1289/ehp.117-a490

    Article  Google Scholar 

  • Theis TL, Gardner KH (2009) Environmental assessment of ash disposal. Crit Rev Environ Control 20(1):37–41

    Google Scholar 

  • Tiwari S, Saxena M (1999) Use of fly ash in high performance industrial coatings. Br Corros J 34(3):184–191

    Article  CAS  Google Scholar 

  • U.S., Department of Energy (2011) Critical Materials Strategy. DIANE publishing, Collingdale

    Google Scholar 

  • Vassilev SV, Vassileva CG (2007) A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel 86:1490–1512

    Article  CAS  Google Scholar 

  • Visa M, Bogatu C, Duta A (2010) Applied surface science simultaneous adsorption of dyes and heavy metals from multicomponent solutions using fly ash. Appl Surf Sci 256:5486–5491

    Article  CAS  Google Scholar 

  • Visa M, Andronic L, Duta A (2015) Fly ash-TiO2 nanocomposite material for multi-pollutants wastewater treatment. J Environ Manag 150:336–343

    Article  CAS  Google Scholar 

  • Wang Y, Dai H, Deng J, Liu Y, Arandiyan H, Li X, Xie S (2013) 3DOM InVO4-supported chromia with good performance for the visible-light-driven photodegradation of rhodamine B. Solid State Sci 24:62–70

    Article  Google Scholar 

  • Wang N, Sun X, Zhao Q, Yang Y, Wang P (2020) Leachability and adverse effects of coal fly ash: a review. J Hazard Mater 396:122725

    Article  CAS  Google Scholar 

  • Wang C, Xu G, Gu X, Gao Y, Zhao P (2021) High value-added applications of coal fly ash in the form of porous materials: a review. Ceram Int 47(16):22302–22315. https://doi.org/10.1016/j.ceramint.2021.05.070

    Article  CAS  Google Scholar 

  • Wu X, Wu S, Qin W, Ma X, Niu Y, Lai S, Ren L (2012) Reductive leaching of gallium from zinc residue. Hydrometallurgy 113–114:195–199

    Article  Google Scholar 

  • Xie F, Zang AT, Dreisinger D, Doyle F (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng 56:10–28

    Article  CAS  Google Scholar 

  • Yang CH, Zhao LM, Liu BG (2005) Use of powdered coal ash for conditioning of specific resistance of sludge water from water works. China Water Wastewater (in Chinese) 21:56–58

    CAS  Google Scholar 

  • Yu X, Cui Y, Chen Y, Chang I-S, Wu J (2022) The drivers of collaborative innovation of the comprehensive utilization technologies of coal fly ash in China: a network analysis. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19816-5

    Article  Google Scholar 

  • Zevenbergen C, Bradley JP, Reeuwijk VLP, Shyam AK, Hjelmar O, Comans RNJ (1999) Clay formation and metal fixation during weathering of coal fly ash. Environ Sci Technol 33(19):3405–3409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Provost of College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Sokama-Neuyam.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Editorial responsibility: Sivakumar Durairaj.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsiah-Gyambibi, R., Sokama-Neuyam, Y.A., Boakye, P. et al. Valorization of coal fly ash (CFA): a multi-industry review. Int. J. Environ. Sci. Technol. 20, 12807–12822 (2023). https://doi.org/10.1007/s13762-023-04895-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-04895-9

Keywords

Navigation