Skip to main content
Log in

A general review on the application of adsorption and oxidation combined processes on methyl tert-butyl ether removal

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The extensive use of methyl tert-butyl ether as a gasoline additive has produced environmental pollution globally due to its high solubility and recalcitrance. Due to the persistent pollution and potential toxicity, the development of technology for methyl tert-butyl ether removal has become a priority. Single technologies have limitations that can be addressed through the combination of various processes. Here, we provide a comprehensive overview of the mechanism and application of adsorption and oxidation combined process to remove methyl tert-butyl ether. The materials commonly used in combined process, such as zeolite and activated carbon, are compared. The physical and chemical properties and functions of different materials are explored. Moreover, the pretreatment mechanism and the effects of acid reagents are discussed. Furthermore, various conditions affecting the removal efficiency, such as temperature, pH, coexisting anions, are analyzed. Ultimately, the integration of adsorption and oxidation processes is promising for efficient degradation of methyl tert-butyl ether.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu-Lail L, Bergendahl JA, Thompson RW (2010) Adsorption of methyl tertiary butyl ether on granular zeolites: batch and column studies. J Hazard Mater 178(1–3):363–369

    Article  CAS  Google Scholar 

  • Acuña-Bedoya JD, Rangel-Sequeda JF, Loredo-Cancino M, Maya-Treviño MDL, Domínguez-Jaimes LP, Hernández-López JM (2022) Integration of the adsorption and electro-oxidation process using 3D printed activated carbon monoliths for the degradation of pharmaceutical compounds. J Environ Chem Eng 10(4):108203. https://doi.org/10.1016/j.jece.2022.108203

    Article  CAS  Google Scholar 

  • Aghdasinia H, Khataee A, Sheikhi M, Takhtfiroozeh P (2017) Pilot plant fluidized-bed reactor for degradation of basic blue 3 in heterogeneous Fenton process in the presence of natural magnetite. Environ Prog Sustain Energy 36(4):1039–1048. https://doi.org/10.1002/ep.12569

    Article  CAS  Google Scholar 

  • Amanollahi H, Moussavi G, Giannakis S (2019) VUV/Fe(II)/H2O2 as a novel integrated process for advanced oxidation of methyl tert-butyl ether (MTBE) in water at neutral pH: Process intensification and mechanistic aspects. Water Res 166:115061. https://doi.org/10.1016/j.watres.2019.115061

    Article  CAS  Google Scholar 

  • Anderson MA (2000) Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites. Environ Sci Technol 34(4):725–727

    Article  CAS  Google Scholar 

  • Anotai J, Sakulkittimasak P, Boonrattanakij N, Lu MC (2009) Kinetics of nitrobenzene oxidation and iron crystallization in fluidized-bed Fenton process. J Hazard Mater 165(1–3):874–880

    Article  CAS  Google Scholar 

  • Babakir BAM, Abd Ali LI, Ismail HK (2022) Rapid removal of anionic organic dye from contaminated water using a poly(3-aminobenzoic acid/graphene oxide/cobalt ferrite) nanocomposite low-cost adsorbent via adsorption techniques. Arab J Chem 15(12):104318. https://doi.org/10.1016/j.arabjc.2022.104318

    Article  CAS  Google Scholar 

  • Bello MM, Raman AAA, Asghar A (2020) Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: oxidation-adsorption synergy and surface interaction. J Water Process Eng 33:101001. https://doi.org/10.1016/j.jwpe.2019.101001

    Article  Google Scholar 

  • Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5):759–769. https://doi.org/10.1016/0008-6223(94)90031-0

    Article  CAS  Google Scholar 

  • Boonrattanakij N, Lu M-C, Anotai J (2011) Iron crystallization in a fluidized-bed Fenton process. Water Res 45(10):3255–3262. https://doi.org/10.1016/j.watres.2011.03.045

    Article  CAS  Google Scholar 

  • Burbano AA, Dionysiou DD, Suidan MT (2008) Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent. Water Res 42(12):3225–3239

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB, Tsang W (1988) Critical review of rate constants for reactions of hydrated electrons chemical kinetic data base for combustion chemistry. Part 3: Propane. J Phys Chem Ref Data 17(2):513–886

    Article  CAS  Google Scholar 

  • Cai QQ, Lee BCY, Ong SL, Hu JY (2021) Fluidized-bed Fenton technologies for recalcitrant industrial wastewater treatment—recent advances, challenges and perspective. Water Res 190:116692. https://doi.org/10.1016/j.watres.2020.116692

    Article  CAS  Google Scholar 

  • Cataldo S, Iannì A, Loddo V, Mirenda E, Palmisano L, Parrino F, Piazzese D (2016) Combination of advanced oxidation processes and active carbons adsorption for the treatment of simulated saline wastewater. Sep Purif Technol 171:101–111. https://doi.org/10.1016/j.seppur.2016.07.026

    Article  CAS  Google Scholar 

  • Centi G, Grande A, Perathoner S (2002) Catalytic conversion of MTBE to biodegradable chemicals in contaminated water. Catal Today 75(1):69–76

    Article  CAS  Google Scholar 

  • Chang X, Feng J, Duan T, Zhou Y, Li Y-X (2022) Outperformance of nano-MgO2-coated sediment in Mn(II) capture through adsorption and oxidation relative to VMT/MMT-based nanocomposites. J Clean Prod 376:134245. https://doi.org/10.1016/j.jclepro.2022.134245

    Article  CAS  Google Scholar 

  • Chen CY, Wu PS, Chung YC (2009) Coupled biological and photo-Fenton pretreatment system for the removal of di-(2-ethylhexyl) phthalate (DEHP) from water. Bioresour Technol 100(19):4531–4534

    Article  CAS  Google Scholar 

  • Chen DZ, Zhang JX, Chen JM (2010) Adsorption of methyl tert-butyl ether using granular activated carbon: equilibrium and kinetic analysis. Int J Environ Sci Technol 7(2):235–242

    Article  CAS  Google Scholar 

  • Chiang YC, Chiang PC, Chang EE (2001) Effects of surface characteristics of activated carbons on VOC adsorption. J Environ Eng 127(1):54–62

    Article  CAS  Google Scholar 

  • Cho D-W, Chon C-M, Yim G-J, Ryu J, Jo H, Kim S-J, Jang J-Y, Song H (2022) Adsorption of potentially harmful elements by metal-biochar prepared via Co-pyrolysis of coffee grounds and Nano Fe(III) oxides. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.136536

    Article  Google Scholar 

  • Crincoli KR, Jones PK, Huling SG (2020) Fenton-driven oxidation of contaminant-spent granular activated carbon (GAC): GAC selection and implications. Sci Total Environ 734:139435. https://doi.org/10.1016/j.scitotenv.2020.139435

    Article  CAS  Google Scholar 

  • Crittenden J, Hand D, Arora H, Benjamin WL Jr (1987) Design considerations for gac treatment of organic chemicals. J Am Water Works Assoc 79:74–82. https://doi.org/10.1002/j.1551-8833.1987.tb02786.x

    Article  CAS  Google Scholar 

  • Dehghani Kiadehi A, Ebadi A, Aghaeinejad-Meybodi A (2017) Removal of methyl tert-butyl ether (MTBE) from aqueous medium in the presence of nano-perfluorooctyl alumina (PFOAL): experimental study of adsorption and catalytic ozonation processes. Sep Purif Technol 182:238–246. https://doi.org/10.1016/j.seppur.2017.03.039

    Article  CAS  Google Scholar 

  • Delahay G, Valade D, Guzmán-Vargas A, Coq B (2005) Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods. Appl Catal B 55(2):149–155

    Article  CAS  Google Scholar 

  • EPA (2008) Interim drinking water health advisory for perchlorate. Available online at https://www.epa.gov/sdwa/perchlorate-drinking-water

  • EPA (2009) National primary drinking water regulations. Available online at https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations

  • Erdem-Senatalar A, Bergendahl JA, Giaya A, Thompson RW (2004) Adsorption of methyl tertiary butyl ether on hydrophobic molecular sieves. Environ Eng Sci 21(6):722–729

    Article  CAS  Google Scholar 

  • Facetti JF, Nunez R, Gomez LC, Ojeda J, Bernal C, Leon-Ovelar R, Carvallo F (2019) Methyl tert-butyl ether (MtBE) in deep wells of the Patiño Aquifer, Paraguay: a preliminary characterization. Sci Total Environ 647:1640–1650. https://doi.org/10.1016/j.scitotenv.2018.08.062

    Article  CAS  Google Scholar 

  • Furusawa T, Smith JM (1974) Intraparticle mass transport in slurries by dynamic adsorption studies. AIChE J 20(1):88–93. https://doi.org/10.1002/aic.690200111

    Article  CAS  Google Scholar 

  • Ghadiri SK, Nabizadeh R, Mahvi AH, Nasseri S, Kazemian H, Mesdaghinia AR, Nazmara S (2010) Methyl tert-butyl ether adsorption on surfactant modified natural zeolites. Iran J Environ Health Sci Eng 7(3):241–252

    CAS  Google Scholar 

  • Gomes de Barros V, Rodrigues CSD, Botello-Suárez WA, Duda RM, Alves de Oliveira R, da Silva ES, Faria JL, Boaventura RAR, Madeira LM (2020) Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation. Environ Pollut 259:113796. https://doi.org/10.1016/j.envpol.2019.113796

    Article  CAS  Google Scholar 

  • Gonzalez-Olmos R, Holzer F, Kopinke FD, Georgi A (2011) Indications of the reactive species in a heterogeneous Fenton-like reaction using Fe-containing zeolites. Appl Catal A 398(1–2):44–53

    Article  CAS  Google Scholar 

  • Gonzalez-Olmos R, Roland U, Toufar H, Kopinke FD, Georgi A (2009) Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Appl Catal B 89(3–4):356–364

    Article  CAS  Google Scholar 

  • Gonzalez-Olmos R, Kopinke FD, Mackenzie K, Georgi A (2013) Hydrophobic Fe-Zeolites for removal of mtbe from water by combination of adsorption and oxidation. Environ Sci Technol 47(5):2353–2360

    Article  CAS  Google Scholar 

  • Gu Z, Fang J, Deng B (2005) Preparation and evaluation of GAC-based Iron-containing adsorbents for arsenic removal. Environ Sci Technol 39(10):3833–3843

    Article  CAS  Google Scholar 

  • Huang H-H, Lu M-C, Chen J-N, Lee C-T (2003) Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons. Chemosphere 51(9):935–943. https://doi.org/10.1016/S0045-6535(03)00042-0

    Article  CAS  Google Scholar 

  • Huling SG, Hwang S (2010) Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon. Water Res 44(8):2663–2671. https://doi.org/10.1016/j.watres.2010.01.035

    Article  CAS  Google Scholar 

  • Huling SG, Jones PK, Ela WP, Arnold RG (2005) Fenton-driven chemical regeneration of MTBE-spent GAC. Water Res 39(10):2145–2153

    Article  CAS  Google Scholar 

  • Huling SG, Jones PK, Lee TR (2007) Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon. Environ Sci Technol 41(11):4090–4096

    Article  CAS  Google Scholar 

  • Huling SG, Kan E, Wingo C (2009) Fenton-driven regeneration of MTBE-spent granular activated carbon—effects of particle size and iron amendment procedures. Appl Catal B 89(3–4):651–658

    Article  CAS  Google Scholar 

  • Huling SG, Ko S, Park S, Kan E (2011) Persulfate oxidation of MTBE- and chloroform-spent granular activated carbon. J Hazard Mater 192(3):1484–1490

    Article  CAS  Google Scholar 

  • Huling SG, Kan E, Caldwell C, Park S (2012) Fenton-driven chemical regeneration of MTBE-spent granular activated carbon—a pilot study. J Hazard Mater 205–206(29):55–62

    Article  Google Scholar 

  • Hung HW, Lin TF (2006) Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite. J Hazard Mater 135(1–3):210–217

    Article  CAS  Google Scholar 

  • Hung HW, Lin TF, Baus C, Sacher F, Brauch HJ (2005) Competitive and hindering effects of natural organic matter on the adsorption of MTBE onto activated carbons and zeolites. Environ Technol 26(12):1371–1382

    Article  CAS  Google Scholar 

  • Hwang S, Huling SG, Ko S (2010) Fenton-like degradation of MTBE: effects of iron counter anion and radical scavengers. Chemosphere 78(5):563–568

    Article  CAS  Google Scholar 

  • Jacukowicz-Sobala I, Ciechanowska A, Kociołek-Balawejder E, Gibas A, Zakrzewski A (2022) Photocatalytically-assisted oxidative adsorption of As(III) using sustainable multifunctional composite material—Cu2O doped anion exchanger. J Hazard Mater 431:128529. https://doi.org/10.1016/j.jhazmat.2022.128529

    Article  CAS  Google Scholar 

  • Jain N, Maiti A (2022) Fe-Mn-Al metal oxides/oxyhydroxides as As(III) oxidant under visible light and adsorption of total arsenic in the groundwater environment. Sep Purif Technol 302:122170. https://doi.org/10.1016/j.seppur.2022.122170

    Article  CAS  Google Scholar 

  • Ji B, Shao F, Hu G, Zheng S, Zhang Q, Xu Z (2009) Adsorption of methyl tert-butyl ether (MTBE) from aqueous solution by porous polymeric adsorbents. J Hazard Mater 161(1):81–87

    Article  CAS  Google Scholar 

  • Kan E, Huling SG (2009) Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon. Environ Sci Technol 43(5):1493–1499

    Article  CAS  Google Scholar 

  • Karanfil T, Kitis M, Kilduff JE, Wigton A (1999) Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environ Sci Technol 33(18):3225–3233

    Article  CAS  Google Scholar 

  • Kim DS (2004) Adsorption characteristics of Fe(III) and Fe(III)-NTA complex on granular activated carbon. J Hazard Mater 106(1):45–54

    Article  CAS  Google Scholar 

  • Koryabkina N, Bergendahl JA, Thompson RW, Giaya A (2007) Adsorption of disinfection byproducts on hydrophobic zeolites with regeneration by advanced oxidation. Microporous Mesoporous Mater 104(1–3):77–82

    Article  CAS  Google Scholar 

  • Kuznetsova EV, Savinov EN, Vostrikova LA, Parmon VN (2004) Heterogeneous catalysis in the Fenton-type system FeZSM-5/H2O2. Appl Catal B 51(3):165–170

    Article  CAS  Google Scholar 

  • Laat JD, Le GT, Legube B (2004) A comparative study of the effects of chloride, sulfate and nitrate ions on the rates of decomposition of H2O2 and organic compounds by Fe(II)/H2O2 and Fe(III)/H2O2. Chemosphere 55(5):715–723

    Article  Google Scholar 

  • Levchuk I, Bhatnagar A, Sillanpää M (2014) Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Sci Total Environ 476–477:415–433. https://doi.org/10.1016/j.scitotenv.2014.01.037

    Article  CAS  Google Scholar 

  • Li Z, Singh S (2008) FTIR and Ab initio investigations of the MTBE-water complex. J Phys Chem A 112(37):8593

    Article  CAS  Google Scholar 

  • Li L, Quinlivan PA, Knappe DRU (2002) Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40(12):2085–2100. https://doi.org/10.1016/S0008-6223(02)00069-6

    Article  CAS  Google Scholar 

  • Lin Z, Deng F, Ren W, Wang Z, Xiao X, Shao P, Zou J, Luo X (2023) Integration of adsorption and simultaneous heterogeneous catalytic oxidation by defective CoFe2O4 activated peroxymonosulfate for efficient As(III) removal: Performance and new insight into the mechanism. Chem Eng J 454:139960. https://doi.org/10.1016/j.cej.2022.139960

    Article  CAS  Google Scholar 

  • Liu X, Chen Z, Du W, Liu P, Zhang L, Shi F (2022) Treatment of wastewater containing methyl orange dye by fluidized three dimensional electrochemical oxidation process integrated with chemical oxidation and adsorption. J Environ Manag 311:114775. https://doi.org/10.1016/j.jenvman.2022.114775

    Article  CAS  Google Scholar 

  • Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F (1999) On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon 37(8):1215–1221

    Article  CAS  Google Scholar 

  • Lu J, Xu F, Cai W (2008) Adsorption of MTBE on nano zeolite composites of selective supports. Microporous Mesoporous Mater 108(1–3):50–55

    Article  CAS  Google Scholar 

  • Martins ALDS, Teixeira LAC, da Fonseca FV, Yokoyama L (2016) Evaluation of the mercaptobenzothiazole degradation by combined adsorption process and Fenton reaction using iron mining residue. Environ Technol 1–8

  • Martucci A, Braschi I, Bisio C, Sarti E, Rodeghero E, Bagatin R, Pasti L (2015) Influence of water on the retention of methyl tertiary-butyl ether by high silica ZSM-5 and Y zeolites: a multidisciplinary study on the adsorption from liquid and gas phase. RSC Adv 5:86997–87006

    Article  CAS  Google Scholar 

  • Melero JA, Calleja G, Martı́nez F, Molina R, Lázár K (2004) Crystallization mechanism of Fe-MFI from wetness impregnated Fe2O3–SiO2 amorphous xerogels: role of iron species in Fenton-like processes. Microporous Mesoporous Mater 74(1):11–21. https://doi.org/10.1016/j.micromeso.2004.06.002

    Article  CAS  Google Scholar 

  • Metcalf MJ, Stevens GJ, Robbins GA (2016) Application of first order kinetics to characterize MTBE natural attenuation in groundwater. J Contam Hydrol 187:47–54. https://doi.org/10.1016/j.jconhyd.2016.02.001

    Article  CAS  Google Scholar 

  • Moreno-Castilla C, Ferro-Garcia MA, Joly JP, Bautista-Toledo I, Rivera-Utrilla J (1995) Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11(11):4386–4392

    Article  CAS  Google Scholar 

  • Noh JS, Schwarz JA (1990) Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon 28(5):675–682

    Article  CAS  Google Scholar 

  • Ogawa T, Kawase Y (2021) Effect of solution pH on removal of anionic surfactant sodium dodecylbenzenesulfonate (SDBS) from model wastewater using nanoscale zero-valent iron (nZVI). J Environ Chem Eng 9(5):105928. https://doi.org/10.1016/j.jece.2021.105928

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2012) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166

    Article  Google Scholar 

  • Pérez-Ramı́rez J, Santhosh Kumar M, Brückner A (2004) Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. J Catal 223(1):13–27.https://doi.org/10.1016/j.jcat.2004.01.007

  • Pirngruber GD, Roy PK, Prins R (2006) On determining the nuclearity of iron sites in Fe-ZSM-5—a critical evaluation. Phys Chem Chem Phys 8(34):3939–3950

    Article  CAS  Google Scholar 

  • Pongkua W, Dolphen R, Thiravetyan P (2018) Effect of functional groups of biochars and their ash content on gaseous methyl tert-butyl ether removal. Colloids Surf A 558:531–537. https://doi.org/10.1016/j.colsurfa.2018.09.018

    Article  CAS  Google Scholar 

  • Pongkua W, Dolphen R, Thiravetyan P (2019) Removal of gaseous methyl tert-butyl ether using bagasse activated carbon pretreated with chemical agents. J Chem Technol Biotechnol 94(5):1551–1558. https://doi.org/10.1002/jctb.5918

    Article  CAS  Google Scholar 

  • Quinlivan PA, Li L, Knappe DRU (2005) Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter. Water Res 39(8):1663–1673

    Article  CAS  Google Scholar 

  • Redding AM, Cannon FS (2014) The role of mesopores in MTBE removal with granular activated carbon. Water Res 56:214–224

    Article  CAS  Google Scholar 

  • Reed BE, Vaughan R, Jiang L (2000) As(III), As(V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. J Environ Eng 126(9):869–873

    Article  CAS  Google Scholar 

  • Rodeghero E, Pasti L, Sarti E, Cruciani G, Bagatin R, Martucci A (2017) Temperature-induced desorption of methyl tert-butyl ether confined on ZSM-5: an in situ synchrotron XRD powder diffraction study. Minerals 7(3):34

    Article  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30(5):1618–1628. https://doi.org/10.1021/es9506216

    Article  CAS  Google Scholar 

  • Rossner A, Knappe DRU (2008) MTBE adsorption on alternative adsorbents and packed bed adsorber performance. Water Res 42(8–9):2287–2299

    Article  CAS  Google Scholar 

  • Russo AV, Lobo DND, Jacobo SE (2015) Removal of MTBE in columns filled with modified natural zeolites. Proc Mater Sci 8:375–382. https://doi.org/10.1016/j.mspro.2015.04.087

    Article  CAS  Google Scholar 

  • Schmidt TC (2003) Analysis of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) in ground and surface water. TrAC, Trends Anal Chem 22(10):776–784. https://doi.org/10.1016/S0165-9936(03)01002-1

    Article  CAS  Google Scholar 

  • Shan S, Chen Z, Koh KY, Wang W, Wu J, Chen JP, Cui F (2022) Decontamination of arsenite by a nano-sized lanthanum peroxide composite through a simultaneous treatment process combined with spontaneously catalytic oxidation and adsorption reactions. Chem Eng J 435:135082. https://doi.org/10.1016/j.cej.2022.135082

    Article  CAS  Google Scholar 

  • Siedlecka EM, Więckowska A, Stepnowski P (2007) Influence of inorganic ions on MTBE degradation by Fenton’s reagent. J Hazard Mater 147(1):497–502. https://doi.org/10.1016/j.jhazmat.2007.01.044

    Article  CAS  Google Scholar 

  • Stefan MI, Mack J, Bolton JR (2000) Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H2O2 Process. Environ Sci Technol 34(4):650–658. https://doi.org/10.1021/es9905748

    Article  CAS  Google Scholar 

  • Tseng H-H, Wey M-Y (2006) Effects of acid treatments of activated carbon on its physiochemical structure as a support for copper oxide in DeSO2 reaction catalysts. Chemosphere 62(5):756–766. https://doi.org/10.1016/j.chemosphere.2005.04.077

    Article  CAS  Google Scholar 

  • Velichkova F, Delmas H, Julcour C, Koumanova B (2017) Heterogeneous fenton and photo-fenton oxidation for paracetamol removal using iron containing ZSM-5 zeolite as catalyst. AIChE J 63(2):669–679. https://doi.org/10.1002/aic.15369

    Article  CAS  Google Scholar 

  • Wan S, Li Y, Cheng S, Wu G, Yang X, Wang Y, Gao L (2022) Cadmium removal by FeOOH nanoparticles accommodated in biochar: effect of the negatively charged functional groups in host. J Hazard Mater 421:126807. https://doi.org/10.1016/j.jhazmat.2021.126807

    Article  CAS  Google Scholar 

  • Wei D, Li B, Luo L, Zheng Y, Huang L, Zhang J, Yang Y, Huang H (2020) Simultaneous adsorption and oxidation of antimonite onto nano zero-valent iron sludge-based biochar: indispensable role of reactive oxygen species and redox-active moieties. J Hazard Mater 391:122057. https://doi.org/10.1016/j.jhazmat.2020.122057

    Article  CAS  Google Scholar 

  • Wu FC, Tseng RL, Juang RS (2005) Comparisons of porous and adsorption properties of carbons activated by steam and KOH. J Colloid Interface 283(1):49–56

    Article  CAS  Google Scholar 

  • Xu XR, Li XY, Li XZ, Li HB (2009) Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes. Sep Purif Technol 68(2):261–266

    Article  CAS  Google Scholar 

  • Yazaydin AO, Thompson RW (2006) Molecular simulation of the adsorption of MTBE in Silicalite, Mordenite, and Zeolite Beta. J Phys Chem B 110(29):14458–14462

    Article  CAS  Google Scholar 

  • Ye F, Shi Y, Sun W, Pang K, Pu M, Yang L, Huang H (2023) Construction of adsorption-oxidation bifunction-oriented carbon by single boron doping for non-radical antibiotic degradation via persulfate activation. Chem Eng J 454:140148. https://doi.org/10.1016/j.cej.2022.140148

    Article  CAS  Google Scholar 

  • Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G (2007) Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Phys Chem Chem Phys 9(27):3483–3499

    Article  CAS  Google Scholar 

  • Zeid NA, Nakhla G, Farooq S, Osei-Twum E (1995) Activated carbon adsorption in oxidizing environments. Water Res 29(2):653–660. https://doi.org/10.1016/0043-1354(94)00158-4

    Article  CAS  Google Scholar 

  • Zeng F, Zhou H, Lin X, Li Y, Liang Y, Xie Q, Atakpa EO, Shen C, Zhang C (2022) Enhanced remediation of fracturing flowback fluids by the combined application of a bioflocculant/biosurfactant-producing Bacillus sp. SS15 and its metabolites. Chemosphere 302:134870. https://doi.org/10.1016/j.chemosphere.2022.134870

    Article  CAS  Google Scholar 

  • Zhang Y, Jin F, Shen Z, Lynch R, Al-Tabbaa A (2018) Kinetic and equilibrium modelling of MTBE (methyl tert-butyl ether) adsorption on ZSM-5 zeolite: batch and column studies. J Hazard Mater 347:461–469. https://doi.org/10.1016/j.jhazmat.2018.01.007

    Article  CAS  Google Scholar 

  • Zhang Y, Jin F, Shen Z, Wang F, Lynch R, Al-Tabbaa A (2019) Adsorption of methyl tert-butyl ether (MTBE) onto ZSM-5 zeolite: Fixed-bed column tests, breakthrough curve modelling and regeneration. Chemosphere 220:422–431. https://doi.org/10.1016/j.chemosphere.2018.12.170

    Article  CAS  Google Scholar 

  • Zhang Y, Alessi DS, Chen N, Luo M, Hao W, Alam MS, Flynn SL, Kenney JPL, Konhauser KO, Ok YS, Al-Tabbaa A (2021) Lead (Pb) sorption to hydrophobic and hydrophilic zeolites in the presence and absence of MTBE. J Hazard Mater 420:126528. https://doi.org/10.1016/j.jhazmat.2021.126528

    Article  CAS  Google Scholar 

  • Zhang Q, Yin H, Su P, Fu W, Song G, Zhou M (2022a) Insight into the dual-cathode peroxi-coagulation process for cost-effective treatment of organic wastewater: Increase pH application range and reduce iron sludge. Chem Eng J 444:136590. https://doi.org/10.1016/j.cej.2022.136590

    Article  CAS  Google Scholar 

  • Zhang T, Wu P, Owens G, Chen Z (2022b) Adsorption and fenton-like oxidation of ofloxacin in wastewater using hybrid MOF bimetallic Fe/Ni nanoparticles. Chemosphere 307:135936. https://doi.org/10.1016/j.chemosphere.2022.135936

    Article  CAS  Google Scholar 

  • Zhang Y, Wang F, Cao B, Yin H, Al-Tabbaa A (2022c) Simultaneous removal of Pb and MTBE by mixed zeolites in fixed-bed column tests. J Environ Sci 122:41–49. https://doi.org/10.1016/j.jes.2021.10.009

    Article  CAS  Google Scholar 

  • Zhou T, Lim TT, Chin SS, Fane AG (2011) Treatment of organics in reverse osmosis concentrate from a municipal wastewater reclamation plant: feasibility test of advanced oxidation processes with/without pretreatment. Chem Eng J 166(3):932–939

    Article  CAS  Google Scholar 

  • Zhu Y, Fan W, Zhang K, Xiang H, Wang X (2020) Nano-manganese oxides-modified biochar for efficient chelated copper citrate removal from water by oxidation-assisted adsorption process. Sci Total Environ 709:136154. https://doi.org/10.1016/j.scitotenv.2019.136154

    Article  CAS  Google Scholar 

  • Zhuang L-L, Li M, Li Y, Zhang L, Xu X, Wu H, Liang S, Su C, Zhang J (2022) The performance and mechanism of biochar-enhanced constructed wetland for wastewater treatment. J Water Process Eng 45:102522. https://doi.org/10.1016/j.jwpe.2021.102522

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the respected editors and reviewers for their helpful comments and suggestions. In addition, the authors are grateful to the Department of Environmental Science & Engineering of Xi’an Jiaotong University for providing the library to search the literature.

Funding

This work was supported by the National Natural Science Foundation of China (Grant number 31300438) and Natural Science Basic Research Plan in Shaanxi Province of China (Grant number 2018JM3039).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. The first draft was drafted by Tingyu Hua and critically revised by Shanshan Li. The literature search and data analysis were performed by Tingyu Hua, Jiangtao Feng, and Wei Yan. All authors commented on previous versions of the manuscript and approved the submitted manuscript (and any substantially modified version that involves the author's contribution to the study). All authors agreed both to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, and the resolution documented in the literature.

Corresponding author

Correspondence to S. Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial responsibility: Senthil Kumar Ponnusamy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, T., Feng, J., Li, S. et al. A general review on the application of adsorption and oxidation combined processes on methyl tert-butyl ether removal. Int. J. Environ. Sci. Technol. 20, 11673–11692 (2023). https://doi.org/10.1007/s13762-023-04888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-023-04888-8

Keywords

Navigation