Skip to main content

Advertisement

Log in

Fertility impacts in crude oil-contaminated soil based on type and quantity of clay

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Artificial soil mixtures were prepared with 10–40% of either kaolinite or bentonite clay, plus Sphagnum moss, and clean sand. Mixtures were placed in plastic containers in the field, and let mature for six months (in a tropical climate). They were then contaminated with 3% of either light, medium or heavy crude oil, and let weather for another six months. Afterward, compaction was measured in the field, and core samples were taken for laboratory determinations. No correlation was found between soil density and compaction, and it appeared that some of the density determinations were unreliable due to interferences from the petroleum. Compaction was low (< 0.5 MPa) for smectite-based soil, but much higher (up to 1.24 MPa) in kaolinite-based soil, especially with higher clay levels contaminated with heavy crude. Water repellency for kaolinite-based soil was low to null (especially for 30 and 40% clay), but repellency for smectite-based soil was three orders of magnitude higher, in the severe to extreme range. However, it is uncertain whether these laboratory determinations on smectite-based soils could be applied to the field. Regional, smectite-rich soils tend to be moist and low-lying in the landscape, unlikely to manifest water repellency, even during the dry season. Field capacity in smectite-based soil showed low impacts (reductions of 0–1% of moisture content with higher amounts of clay), but kaolinite-based soil showed considerable reduction, especially at 30% clay (being 15% less). The importance of these results for contamination, characterization and remediation of regional soils is discussed, as well as recommendations for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Code availability

The authors used Free R Statistical Software and Excel for this research.

References

  • Abosede EE (2013) Effect of crude oil pollution on some soil physical properties. J Agric Vet Sci 6:14–17

    Google Scholar 

  • Adams RH, Guzmán-Osorio FJ, Zavala JC (2008a) Water repellency in oil contaminated sandy and clayey soils. Int J Environ Sci Technol 5:445–454

    Article  CAS  Google Scholar 

  • Adams RH, Zavala JC, Morales GF (2008b) Concentración residual de hidrocarburos en suelos del trópico II: afectación a la fertilidad y su recuperación. Interciencia 33:483–489

    Google Scholar 

  • Adams RH, Olán-Castro D, Guzmán-Osorio FJ, Díaz-Ramírez IJ (2009) Relationship between geomorphology and contamination with weathered hydrocarbons in an old river levee/marsh association. Int J Environ Sci Technol 6:527–538

    Article  CAS  Google Scholar 

  • Adams RH, Cerecedo-López RA, Alejandro-Álvarez LA, Domínguez-Rodríguez VI, Nieber JL (2016) Treatment of water-repellent petroleum-contaminated soil from Bemidji, Minnesota, by alkaline desorption. Int J Environ Sci Technol 13:2249–2260

    Article  CAS  Google Scholar 

  • Ahmad AA, Jadoon S, Malik A, Sirwan R (2016) Effects of crude oil spillage on the physico-chemical properties of soil, Tarjan, Kurdistan region, Iraq. J Environ Earth Sci 6:27–32

    Google Scholar 

  • Albergaria JT, Maria da Conceição M, Delerue-Matos C (2012) Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. J Environ Manag 104:195–201

    Article  CAS  Google Scholar 

  • Álvarez-Coronel G, Domínguez-Rodríguez VI, Adams RH, López DJ, Zavala-Cruz J (2020) The role of soil clays in mitigating or exacerbating impacts to fertility in crude oil-contaminated sites. Pertanika J Trop Agric Sci 43:119–139

    Google Scholar 

  • American Society of Agricultural and Biological Engineers (ASABE) (2006) ASAE S313.3 Soil cone penetrometer. Saint Joseph, pp. 902–904

  • Aulis García RE (2015) Evaluación Geológica y Petrolera del Campo Cinco Presidentes en la Cuenca Salina del Istmo. Thesis in Geological Engineering. Universidad Nacional Autónoma de México, Mexico City

    Google Scholar 

  • Chachina SB, Voronkova NA, Baklanova ON (2016) Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida. Proc Eng 152:122–133

    Article  CAS  Google Scholar 

  • Comisión Nacional de Hidrocarburos (CNH) (2014) Cuencas del Sureste, Aguas Someras, Síntesis Geológica Petrolera. Mexico City. Available online at: https://www.rondasmexico.gob.mx/media/1418/atlas.pdf. Accepted 22 Jan 2020

  • Daryaee R, Moosavi AA, Ghasemi R, Riazi M (2021) Effect of some petroleum products on water repellency of texturally different soils. Iran J Soil Water Res 52:2237–2251

    Google Scholar 

  • Diamantis V, Pagorogon L, Gazani E, Gkiougkis I, Pechtelidis A, Pliakas F, van den Elsen E, Doerr SH, Ritsema CJ (2016) Use of clay dispersed in water for decreasing soil water repellency. Land Degrad Dev 28:328–334

    Article  Google Scholar 

  • Dlapa P, Doerr SH, Lichner L, Sir M, Tesar M (2004) Effect of kaolinite and Ca-montmorillonite on the alleviation of soil water repellency. Plant Soil Environ 50:358–363

    Article  CAS  Google Scholar 

  • Domínguez-Rodríguez VI, Adams RH, Vargas-Almeida M, Zavala-Cruz J, Romero-Frasca E (2020) Fertility deterioration in a remediated petroleum-contaminated soil. Int J Environ Res Public Health 17:382

    Article  Google Scholar 

  • Domínguez-Rodríguez VI, Adams RH (2011) Restoration of hydrocarbon contaminated water-repellent soil: novel alkaline desorption-organic amendment treatment process. In: 18th annual international petroleum and biofuels environmental conference. Houston, Texas

  • Duiker SW (2004) Effects of soil compaction. The Pennsylvania State University. Available online at: https://extension.psu.edu/effects-of-soil-compaction. Accepted 4 Feb 2022

  • Duiker S (2013) Tips for diagnosing soil compaction. No-Till Farmer. Available online at: https://www.no-tillfarmer.com/articles/2127-tips-for-diagnosing-soil-compaction. Accepted 5 Feb 2022

  • Environmental Protection Agency (EPA) (2012) Ecological effects test guidelines, OCSPP 850.3100. Earthworm subchronic toxicity test. Officer of chemical safety and pollution prevention (7101) EPA 712-C016

  • Guzmán-Osorio FJ, Adams RH (2014) Mitigation of water repellency in the treatment of contaminated muds using the chemical–biological stabilization process. Int J Environ Sci Technol 12:2071–2078

    Article  Google Scholar 

  • Heuzé V, Tran G, Sauvant D (2015) Koronivia grass (Brachiaria humidicola). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. Available online at: https://www.feedipedia.org/node/585. Accepted 6 Feb 2022

  • Hewelke E, Gozdowski D (2020) Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon. Environ Sci Pollut Res 27:9697–9706

    Article  CAS  Google Scholar 

  • Idowu OJ, Angadi S (2013) Understanding and managing soil compaction in agricultural fields. Circular 672, cooperative extension service. New Mexico State University, Las Cruces, NM

    Google Scholar 

  • Kayode J, Oyedeji AA, Olowoyo O (2009) Evaluation of the effects of pollution with spent lubricating oil on the physical and chemical properties of soil. Pac J Sci Technol 9:387–397

    Google Scholar 

  • Labud V, García C, Hernández T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66:1863–1871. https://doi.org/10.1016/j.chemosphere.2006.08.021

    Article  CAS  Google Scholar 

  • Leelamanie DAL, Karube J, Yoshida A (2010) Clay effects on the contact angle and water drop penetration time of model soils. Soil Sci Plant Nutr 56:371–375

    Article  Google Scholar 

  • Li YT, Zhang JJ, Li YH, Chen JL, Du WY (2022) Treatment of soil contaminated with petroleum hydrocarbons using activated persulfate oxidation, ultrasound, and heat: a kinetic and thermodynamic study. Chem Eng J 428:131336

    Article  CAS  Google Scholar 

  • Lichner L, Dlapa P, Doerr SH, Mataix-Solera J (2006) Evaluation of different clay minerals as additives for soil water repellency alleviation. Appl Clay Sci 31:238–248

    Article  CAS  Google Scholar 

  • Marinescu MM, Toti M, Tanase V, Plopeanu G, Calcio I, Marinescu M (2011) The effects of crude oil pollution on physical and chemical characteristics of soil. Res J Agric Sci 43:125–129

    Google Scholar 

  • Marín-García DC, Adams RH, Hernández-Barajas R (2015) Effect of crude petroleum on water repellency in a clayey alluvial soil. Int J Environ Sci Technol 13:55–64

    Article  Google Scholar 

  • Medina R, Gara PMD, Fernández-González AJ, Rosso JA, Del Panno MT (2018) Remediation of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation. Sci Total Environ 618:518–530

    Article  CAS  Google Scholar 

  • Méndez-Natera J, Salazar-Garantón R, Velásquez A (2007) Efecto del Derrame Petrolero Simulado y la Aplicación de un Remediador sobre la Germinación de Semillas y Desarrollo de Plántulas en Algodón (Gossypium hirsutum L.) y Quinchoncho (Cajanus Cajan (L.) Millsp.). Rev Tecnol ESPOL 20:209–214

    Google Scholar 

  • Morales-Bautista CM, Adams RH, Hernández-Barajas JR, Lobato-García CE, Torres-Torres JG (2016) Characterization of fresh and weathered petroleum for potential impacts to soil fertility. Int J Environ Sci Technol 13:2689–2696

    Article  CAS  Google Scholar 

  • Moses EA, Uwah EI (2015) The effect of crude oil pollution on some soil parameters in Ikot Oboreyin, Ikot Abasi, Akwa Ibom State, Nigeria. Merit Res J Environ Sci Toxicol 3:017–024

    CAS  Google Scholar 

  • Oluremi JR, Adewuyi AP, Sanni AA (2015) Compaction characteristics of oil contaminated residual soil. J Eng Technol 6:75–87

    Google Scholar 

  • Oshunsanya SO, Aliku O (2017) Vetiver grass: a tool for sustainable agriculture. Grasses-benefits, diversities and functional roles. https://doi.org/10.5772/intechopen.69303. Available online at: https://www.intechopen.com/chapters/55730. Accepted 6 Feb 2022

  • Oyem IL (2013) Effects of crude oil spillage on soil physico-chemical properties in Ugborodo community. Int J Mod Eng Res 3:3336–3342

    Google Scholar 

  • Palma-López DJ, Jiménez-Ramírez R, Zavala-Cruz J, Bautista-Zúñiga F, Gavi-Reyes F, Palma-Cancino DY (2017) Actualización de la clasificación de suelos de Tabasco, México. Agro Product 10:29–35

    Google Scholar 

  • Petróleos Mexicanos (PEMEX) (2018) Informe de sustentabilidad 2018. Available online at: https://www.pemex.com/etica_y_transparencia/transparencia/informes/Paginas/informes.aspx. Accepted 21 Dec 2020

  • Petróleos Mexicanos (PEMEX) (2019) Informe anual 2019. Available online at: https://www.pemex.com/acerca/informes_publicaciones/Documents/InformeAnual/Informe%20Anual%202019.pdf. Accepted 21 Dec 2020

  • Philip JN, Vance W, Bell RW, Chhay T, Boyd D, Phimphachanhvongsod V, Denton MD (2019) Forage options to sustainably intensify smallholder farming systems on tropical sandy soils. A review. Agron Sustain Dev 39:1–19

    Google Scholar 

  • Rab MA, Fisher PD, Armstrong RD, Abuzar M, Robinson NJ, Chandra S (2009) Advances in precision agriculture in south-eastern Australia. IV. Spatial variability in plant-available water capacity of soil and its relationship with yield in site-specific management zones. Crop Pasture Sci 60:885–900

    Article  Google Scholar 

  • Rab MA, Chandra S, Fisher PD, Robinson NJ, Kitching M, Aumann CD, Imhof M (2011) Modelling and prediction of soil water contents at field capacity and permanent wilting point of dryland cropping soils. Soil Res 49:389–407

    Article  Google Scholar 

  • Rajabi H, Sharifipour M (2018) Geotechnical properties of hydrocarbon-contaminated soils: a comprehensive review. Bull Eng Geol Env 78:3685–3717. https://doi.org/10.1007/s10064-018-1343-1

    Article  CAS  Google Scholar 

  • Raper RL, Kirby JM (2006) Soil compaction: how to do it, undo it, or avoid doing it. American society of agricultural and biological engineers. Available online at: https://www.ars.usda.gov/ARSUserFiles/60100500/csr/researchpubs/raper/raper_06d.pdf. Accepted 6 Feb 2022

  • Secretaria de Medio Ambiente y Recursos Naturales, SEMARNAT (2002) NOM-021-SEMARNAT-2000. Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudio, muestreo y análisis. Available online at: https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/libros2009/DO2280n.pdf. Accepted 20 Dec 2020

  • Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) (2012) Informe de la situación del medio ambiente en México. Compendio de estadísticas ambientales. Indicadores clave y de desempeño ambiental. Edición 2012. Available online at: https://apps1.semarnat.gob.mx:8443/dgeia/informe_12/07_residuos/cap7_6.html. Accepted 20 Dec 2020

  • Smith E, Thavamani P, Ramadass K, Naidu R, Srivastava P, Megharaj M (2015) Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. Int Biodeterior Biodegrad 101:56–65

    Article  CAS  Google Scholar 

  • Torres LG, Climent M, Saquelares J, Bandala ER, Urquiza G, Iturbe R (2007) Characterization and treatability of a contaminated soil from an oil exploration zone. Int J Environ Sci Technol 4:311–322

    Article  Google Scholar 

  • Udonne JD, Onwuma HO (2014) A study of the effects of waste lubricating oil on the physical/chemical properties of soil and the possible remedies. J Pet Gas Eng 5:9–14. https://doi.org/10.5897/JPGE2013.0163

    Article  CAS  Google Scholar 

  • Wang Y, Feng J, Lin Q, Lyu X, Wang X, Wang G (2013) Effects of crude oil contamination on soil physical and chemical properties in Momoge Wetland of China. Chin Geogra Sci 23:708–715. https://doi.org/10.1007/s11769-013-0641-6

    Article  Google Scholar 

  • Wei Y, Li G (2018) Effect of oil pollution on water characteristics of loessial soil. IOP Conf Series Earth Environ Sci 170(3):032154

    Article  Google Scholar 

  • Zavala-Cruz J, Jiménez Ramírez R, Palma-López DJ, Bautista Zúñiga F, Gavi Reyes F (2016) Paisajes geomorfológicos: base para el levantamiento de suelos en Tabasco, México. Ecosistemas Recur Agropecu 3:161–171

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Remediation Laboratory of the Universidad Juárez Autónoma de Tabasco for facilities and materials and to Eng. Eugenio González Javier for his support with mixing equipment from his laboratory.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

GÁ-C helped in investigation, writing original draft, writing review and editing; VID-R performed methodology, project admin., supervision; RHA contributed to conceptualization, resources, supervision, writing original draft, writing review and editing; DJP-L and JZ-C were involved in methodology, validation; JAG-G helped in statistical analysis, validation.

Corresponding author

Correspondence to V. I. Domínguez-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material. 

Supplementary file1 (DOCX 208 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Coronel, G., Domínguez-Rodríguez, V.I., Adams, R.H. et al. Fertility impacts in crude oil-contaminated soil based on type and quantity of clay. Int. J. Environ. Sci. Technol. 20, 9555–9570 (2023). https://doi.org/10.1007/s13762-022-04616-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04616-8

Keywords

Navigation