Skip to main content
Log in

Water repellency in oil contaminated sandy and clayey soils

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Two sites from a humid tropical environment were studied with respect to soil water repellency caused by hydrocarbon contamination. Samples were analyzed for water repellency (molarity ethanol droplet method), total petroleum hydrocarbons, acute toxicity (Microtox) and field capacity. At both sites, water absorption times were logarithmically related to the molarity ethanol drop value (R > 0.95). In a sandy soil collected from an old separation battery which had been bioremediated, field capacity was strongly related to hydrocarbon concentration (R = 0.998); and at 10,000 mg/kg the calculated field capacity was only 75 % of the baseline. Water repellency was related to hydrocarbon concentration asymptotically and plant growth limiting values (severity > 3.0) were observed at low concentrations (2,400 mg/kg), even though toxicity was at, or below background levels. Bioremediated soil at this site had hydrocarbon concentrations only 1,300 ppm above background, but had extreme water repellency (severity = 4.6–4.7). Soil water repellency was also measured in a clayey, organic rich floodable soil, in a multiple pipeline right-of-way colonized by water tolerant pasture and cattails. Water repellency was associated with total petroleum hydrocarbon concentration (R = 0.962), but was not related to field capacity or toxicity. In this low-lying site, the water repellency observed in the laboratory is probably not representative of field conditions: samples taken at the end of the ten week dry season (and only four days before the first rains) showed ample moisture (> 80 % field capacity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, R. H.; Zavala Cruz., J.; Morales García, F., (2008). Concentración residual de hidrocarburos en suelo del trópico. II: afectación a la fertilidad y su recuperación. Interciencia, 33(7), 483–489.

    Google Scholar 

  • Adams, R. H.; Álvarez-Ovando, A. L.; Escalante Espinosa, E.; Gutiérrez Rojas, M., (2006). Dose-response relationship of organisms in soil with heavily weathered hydrocarbons and changes in fertility parameters. 13th. Int. Environ. Petrol. Conf. San Antonio, Texas, USA. Available at: http://ipec.utulsa.edu/Conf2006/Papers/Adams_37.pdf.

  • Blake, J., (2002). Water repellent soils symptom of decline. Ground Cover No. 40. Grains Research and Development Corporation, Australia. Available at: http://www.grdc.com.au.

  • Bohn, H. L.; McNeal, B. L.; O’Connor, G. A., (2001). Soil chemistry. 3rd. Ed. John Wiley and Sons, Inc. New York.

    Google Scholar 

  • DeBano, L. F., (1981). Water repellent soils: A state of the art. USDA Forest Service. Pacific Southwest Forest and Range Experiment Station. General Technical Report PSW 46. California, USA.

  • Dekker, L. W.; Ritsema, C. J., (2000). Wetting patterns and moisture variability in water repellent Dutch soils. J. Hydrol. 231–232, 148–164.

    Article  Google Scholar 

  • Doerr, S. H.; Shakesby, R. A.; Walsh, R. P. D., (2000). Soil water repellency, its characterization, causes and hydrogeomorphological significance. Earth Sci. Rev. 51(1), 33–65.

    Article  Google Scholar 

  • EPA, (1997). Test methods for evaluating solid waste: Physical/chemical methods, Environmental Protection Agency, Publication No. EPA 530/SW-846.

  • Hamilton, W. A.; Sewell, J. J., (1999). Technical basis for current soil management levels of total petroleum hydrocarbons. International Petroleum Environmental Conference (IPEC), Houston, TX — November 16–18. Available at: http://ipec.utulsa.edu/Conf/6thIPEC.pdf.

  • Hernández-Valencia, I.; Mager, D., (2003). Uso de Panicum maximum y Brachiaria brizantha para fitorremediar suelos contaminados con un crudo de petróleo liviano. Bioagra. 15(3), 149–155. Available at: http://cdcht.ucla.edu.ve/bioagro/Rev15(3)/1.%20Uso%20de%20Panicum.pdf

    Google Scholar 

  • Infante, C., (2001), Biorrestauración de areas impactadas por crudo por medio de Intebios y Biorize. Interciencia 26(10), 504–507.

    Google Scholar 

  • Jaramillo J., D. F., (2003). Efecto de dos tem-peraturas de de la temperature de secado del suelo sobre la repelencia al agua en Andisoles bajo cobertura de Pinus patula. Informe de Investigación. Universidad Nacional de Colombia, Medellín.

  • Jaramillo J. D. F., (2006). Repelencia al agua en suelos: una síntesis. Rev. Ac. Colomb. Cienc., 30(115), 215–232.

    Google Scholar 

  • King, P. M., (1981). Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Aus. J. Soil Res., 19(3), 275–285.

    Article  Google Scholar 

  • Letey, J.; Carrillo, M. L. K.; Pang, X. P., (2000). Approaches to characterize the degree of water repellency. J. Hydrol. 231-232, 61–65.

    Article  CAS  Google Scholar 

  • Li, X.; Feng, Y.; Sawatsky, N., (1997). Importance of soil-water relations in assessing the endpoint of bioremediated soils. I. Plant Growth. Plan. Soil, 192(2), 219–226

    Article  CAS  Google Scholar 

  • LDNR, (1986). Statewide Order 29-B, Drilling and Production, Chapter XV, Louisiana Department of Natural Resources, Office of Conservation.

  • Martínez, M. V. E.; López, S. F., (2001). Efecto de hidrocarburos en las propiedades físicas y químicas de suelo arcilloso. Terra, 19(1), 9–17.

    Google Scholar 

  • Mathews, C.; Williamson, R.; Keeton, B.; Rylander, C., (1997). Statewide rules for oil, gas and geothermal operations, Annual Report, Code: c133. Railroad Commission of Texas, Oil and Gas Division.

  • McMillen, S.; Smart, R.; Bernier, R., (2002), Biotreating E&P wastes: lessons learned from 1992–2002. International Petroleum Environmental Conference (IPEC), Albuquerque, NM — October 22–25. Available at: http://ipec.utulsa.edu/Conf2002/mcmillen_smart_bernier_122.pdf

  • Rivera Cruz, M. C.; Tujillo Narcía, A., (2004). Estudio de toxicidad vegetal en suelos con petróleos nuevo e intemperizado. Interciencia, 29(7), 369–376.

    Google Scholar 

  • Roy, J. L.; McGill, W. B., (1998). Characterization of disaggregated nonwettable surface soils found at old crude oil spill sites. Can. J. Soil Sci., 78(2), 331–334.

    Article  Google Scholar 

  • Roy, J. L.; McGill, W. B., (2002). Assessing soil water repellency using the molarity of ethanol droplet test. Soil Sci., 167(2), 83–97.

    Article  CAS  Google Scholar 

  • Roy, J. L.; McGill, W. B.; Lowen, H. A.; Johnson, R. L., (2003). Relationship between water repellency and native and petroleum-derived organic carbon in soils. J. Environ. Qual., 32(2), 583–590.

    CAS  Google Scholar 

  • Salanitro, J. P.; Dorn, P. B.; Huesemann, M. H.; Moore, K. O.; Rhodes, I. A.; Rice Jackson, L. A.; Vipond, T. E.; Western, M. M.; Wisniewski, H. L., (1997). Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ. Sci. Tech., 31(6), 1769–1776.

    Article  CAS  Google Scholar 

  • SECOFI, (1996). Norma Mexicana NMX-AA-112-1995-SCFI, Secretaría de Comercio y Fomento Industrial, Análisis de agua y sedimento — evaluación de toxicidad aguda con Photobacterium phosphoreum — Método de prueba, México D.F., Dirección General de Normas, 6 marzo.

  • West, R. C.; Psuty, N. P.; Thom, B. G., (1987). Las tierras bajas de Tabasco en el Sureste de México. Gobierno del Estado de Tabasco, Villahermosa, Tabasco.

  • Wisono, T., (2006). Phytoremediation approach for contaminated soil at Kalimantan, Indonesia. International Petroleum Environmental Conference (IPEC), San Antonio, TX — Octobre 17–20. Available at: http://ipec.utulsa.edu/Conf2006/Abstracts/Wisono_107.pdf

  • Zavala Cruz, J., (2004). Índices de contaminación por petróleo y prácticas de recuperación de suelos con pastizal en el activo Cinco Presidentes, Tabasco. Tesis de Doctorado, Colegio de Posgraduados — Campus México (Montecillo, Texoco, Estado de México.)

  • Zavala Cruz, J.; Gavi-Reyes, F.; Adams-Schroeder, R. H.; Ferrera-Cerrato, R.; Palma-López, D. J.; Vaquera-Huerta, H.; Domínguez-Ezquivel, J. M., (2005). Derrames de petróleo en suelos y adaptación de pastos tropicales en el activo Cinco Presidentes, Tabasco. Terra. Sociedad Mexicana de la Ciencia del Suelo., 23(2), 293–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, R.H., Guzmán Osorio, F.J. & Zavala Cruz, J. Water repellency in oil contaminated sandy and clayey soils. Int. J. Environ. Sci. Technol. 5, 445–454 (2008). https://doi.org/10.1007/BF03326040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326040

Keywords

Navigation