Skip to main content

Advertisement

Log in

Pesticide residues degradation strategies in soil and water: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The benefits of using pesticides globally to control pests come at the cost of their ubiquitous occurrence in the ecosystem. The uncontrolled use of pesticides in agricultural practices, manufacturing and food industries and in health sector not only contaminates the environment but also affects non-targeted organisms. There are various biotic and abiotic methods of transforming or removing pesticides, but they may give rise to harmful end products. In this article, various techniques such as photodegradation, phytodegradation and biodegradation used to remove or transform pesticides in the environment are discussed. The current study revealed that use of UV or sunlight to degrade pesticides on soil surface is an effective method, but the results may vary in the laboratory and field conditions. The plants absorb these chemicals from the soil and metabolize it into simpler forms by different processes such as phytovolatilization, phytostimulation, phytoextraction and rhizodegradation. The bioremediation process using microbes or soil microflora to degrade pesticides is a cost-effective technique till date. Actinomycetes and cyanobacteria are the most efficient degraders among the micro-organisms. Microbes possess different enzymes such as Glutathione S-transferases (GSTs), esterases and cytochrome P450 which are involved in the degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdennouri M, Baâlala M, Galadi A, El Makhfouk M, Bensitel M, Nohair K, Sadiq M, Boussaoud A, Barka N (2016) Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arab J Chem 9:S313–S318

    Article  CAS  Google Scholar 

  • Abdul Salam J, Das N (2013) Enhanced biodegradation of lindane using oil-in-water bio-microemulsion stabilized by biosurfactant produced by a new yeast strain, Pseudozyma VITJzN01. J Microbiol Biotechnol 23(11):1598–1609

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  Google Scholar 

  • Al-Arfaj A, Abdel-Megeed A, Ali HM, Al-Shahrani O (2013) Phyto-microbial degradation of glyphosate in Riyadh area. J Pure App Microbio 7(2):1351–1365

    CAS  Google Scholar 

  • Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6(7):987–998

    CAS  Google Scholar 

  • Alvarenga N, Birolli WG, Seleghim MH, Porto AL (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52

    Article  CAS  Google Scholar 

  • Amaya-Chávez A, Martínez-Tabche L, Lopez-Lopez E, Galar-Martinez M (2006) Methyl parathion toxicity to and removal efficiency by Typha latifolia in water and artificial sediments. Chemosphere 63(7):1124–1129

    Article  Google Scholar 

  • Armbrust KL (2001) Photodegradation of hydroxychlorothalonil in aqueous solutions. Environ Toxicol Chem Int J 20(12):2699–2703

    Article  CAS  Google Scholar 

  • Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2(1):1–8

    Article  Google Scholar 

  • Åslund MW, Zeeb B (2010) A review of recent research developments into the potential for phytoextraction of persistent organic pollutants (Pops) from weathered, contaminated soil. In: Kulakow PA, Pidlisnyuk VV (eds) Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. NATO science for peace and security series C: environmental security. Springer, Dordrecht, pp 35–59. https://doi.org/10.1007/978-90-481-3592-9_4

    Chapter  Google Scholar 

  • Baczynski TP, Grotenhuis T, Knipscheer P (2004) The dechlorination of cyclodiene pesticides by methanogenic granular sludge. Chemosphere 55(5):653–659

    Article  CAS  Google Scholar 

  • Bapat G, Labade C, Chaudhari A, Zinjarde S (2016) Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Coll Interface Sci 237:1–14

    Article  CAS  Google Scholar 

  • Barbeni M, Pramauro E, Pelizzetti E, Borgarello E, Serpone N (1985) Photodegradation of pentachlorophenol catalyzed by semiconductor particles. Chemosphere 14(2):195–208

    Article  CAS  Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67(8):886–890

    Article  CAS  Google Scholar 

  • Baz M, Fernandez RT (2002) Evaluating woody ornamentals for use in herbicide phytoremediation. J Am Soc Hortic Sci 127(6):991–997

    Article  CAS  Google Scholar 

  • Bernardes MFF, Pazin M, Pereira LC, Dorta DJ (2015) Impact of pesticides on environmental and human health toxicology studies. In: Andreazza CA (ed) Cells, drugs and environment. InTech, Croatia, pp 195–233

    Google Scholar 

  • Bhalerao TS, Puranik PR (2009) Microbial degradation of monocrotophos by Aspergillus oryzae. Int Biodeterior Biodegradation 63(4):503–508

    Article  CAS  Google Scholar 

  • Bi YF, Miao SS, Lu YC, Qiu CB, Zhou Y, Yang H (2012) Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J Hazard Mater 243:242–249

    Article  CAS  Google Scholar 

  • Bielska D, Karewicz A, Lachowicz T, Berent K, Szczubiałka K, Nowakowska M (2015) Hybrid photosensitizer based on halloysite nanotubes for phenol-based pesticide photodegradation. Chem Eng J 262:125–132

    Article  CAS  Google Scholar 

  • Bizani E, Lambropoulou D, Fytianos K, Poulios I (2014) Photocatalytic degradation of molinate in aqueous solutions. Environ Sci Pollut Res 21(21):12294–12304

    Article  CAS  Google Scholar 

  • Bogdevich O, Cadocinicov O (2010) Elimination of acute risks from obsolete pesticides in Moldova: phytoremediation experiment at a former pesticide storehouse. In: Application of phytotechnologies for cleanup of industrial, agricultural, and wastewater contamination. Springer, Dordrecht, pp 61–85

  • Burrows HD, Santaballa JA, Steenken S (2002) Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B 67(2):71–108

    Article  CAS  Google Scholar 

  • Bustos N, Cruz-Alcalde A, Iriel A, Cirelli AF, Sans C (2019) Sunlight and UVC-254 irradiation induced photodegradation of organophosphorus pesticide dichlorvos in aqueous matrices. Sci Total Environ 649:592–600

    Article  CAS  Google Scholar 

  • Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 150(11):3889–3897

    Article  CAS  Google Scholar 

  • Cardeal ZL, Souza AG, Amorim LC (2011) Analytical methods for performing pesticide degradation studies in environmental samples. In: Pesticides-formulations, effects, fate. IntechOpen

  • Carpi A (ed) (2011) Progress in molecular and environmental bioengineering: from analysis and modeling to technology applications. BoD–Books on Demand

  • Cawoy H, Bettiol W, Fickers P, Ongena M, Stoytcheva M (2011) Pesticides in the modern world—pesticides use and management. Edited by Dr. Margarita Stoytcheva

  • Chakraborty SK, Bhattacharyya A, Chowdhury A (1993) Phototransformation of the insecticide hydramethylnon in aqueous systems. Pestic Sci 37(1):73–77

    Article  CAS  Google Scholar 

  • Chang SW, Lee SJ, Je CH (2005) Phytoremediation of atrazine by poplar trees: toxicity, uptake, and transformation. J Environ Sci Health B 40(6):801–811

    Article  Google Scholar 

  • Chanika E, Georgiadou D, Soueref E, Karas P, Karanasios E, Tsiropoulos NG, Tzortzakakis EA, Karpouzas DG (2011) Isolation of soil bacteria able to hydrolyze both organophosphate and carbamate pesticides. Biores Technol 102(3):3184–3192

    Article  CAS  Google Scholar 

  • Chen L, Song F, Liu Z, Zheng Z, Xing J, Liu S (2012a) Multi-residue method for fast determination of pesticide residues in plants used in traditional Chinese medicine by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1225:132–140

    Article  CAS  Google Scholar 

  • Chen WM, Tang YQ, Mori K, Wu XL (2012b) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15(2):99–110

    Article  Google Scholar 

  • Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PloS one 7(10):e47205

    Article  CAS  Google Scholar 

  • Cheng C, Huang L, Diao J, Zhou Z (2013) Enantioselective toxic effects and degradation of myclobutanil enantiomers in Scenedesmus obliquus. Chirality 25(12):858–864

    Article  CAS  Google Scholar 

  • Chhikara S, Paulose B, White JC, Dhankher OP (2010) Understanding the physiological and molecular mechanism of persistent organic pollutant uptake and detoxification in cucurbit species (zucchini and squash). Environ Sci Technol 44(19):7295–7301

    Article  CAS  Google Scholar 

  • Chi J, Huang GL (2004) Photodegradation of pentachlorophenol by sunlight in aquatic surface microlayers. J Environ Sci Health B 39(1):65–73

    Article  Google Scholar 

  • Choudhury PP, Dureja P (1996) Phototransformation of chlorimuron-ethyl in aqueous solution. J Agric Food Chem 44(10):3379–3382

    Article  CAS  Google Scholar 

  • Choudhury PP, Dureja P (1997) Studies on photodegradation of chlorimuron-ethyl in soil. Pestic Sci 51(2):201–205

    Article  CAS  Google Scholar 

  • Cork DJ, Krueger JP (1991) Microbial transformations of herbicides and pesticides. Adv Appl Microbiol 36:1–66

    Article  CAS  Google Scholar 

  • Cruz M, Gomez C, Duran-Valle CJ, Pastrana-Martínez LM, Faria JL, Silva AM, Faraldos M, Bahamonde A (2017) Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl Surf Sci 416:1013–1021

    Article  CAS  Google Scholar 

  • Cui CZ, Zeng C, Wan X, Chen D, Zhang JY, Shen P (2008) Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B. J Microbiol Biotechnol 18(1):63–66

    CAS  Google Scholar 

  • Deng S, Chen Y, Wang D, Shi T, Wu X, Ma X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24

    Article  CAS  Google Scholar 

  • Dhahir SA, Muhyedeen BRJ, Nassory NS, Numan SA (2011) Quantitative study of photocatalyst degradation of propanil herbicide in water using different analytical methods. Pak J Chem 1:1–9

    Article  CAS  Google Scholar 

  • Dimou AD, Sakkas VA, Albanis TA (2004) Photodegradation of trifluralin in natural waters and soils: degradation kinetics and influence of organic matter. Int J Environ Anal Chem 84(1–3):173–182

    Article  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):1–10

    Article  Google Scholar 

  • Dosnon-Olette R, Couderchet M, Eullaffroy P (2009) Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. Ecotoxicol Environ Saf 72(8):2096–2101

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179(2):318–333

    Article  CAS  Google Scholar 

  • Doucette WJ, Bugbee BG, Smith SC, Pajak CJ, Ginn JS (2003) Uptake, metabolism, and phytovolatilization of trichloroethylene by indigenous vegetation: impact of precipitation. In: Schnoor JL, Zehnder A, McCutcheon SC, Schnoor JL (eds) Phytoremediation. https://doi.org/10.1002/047127304X.ch18

  • Eddleston M, Karalliedde L, Buckley N, Fernando R, Hutchinson G, Isbister G, Konradsen F, Murray D, Piola JC, Senanayake N, Sheriff R (2002) Pesticide poisoning in the developing world—a minimum pesticides list. Lancet 360(9340):1163–1167

    Article  Google Scholar 

  • El Yadini A, Marouane B, Ahmido A, Dunlop P, Byrne JA, El M, El Hajjaji S (2013) Photolysis and photodegradation of Fenamiphos insecticide by using slurry and supported TiO2. J Mater Environ Sci 4(6):973–980

    Google Scholar 

  • Elsaesser D, Blankenberg AGB, Geist A, Mæhlum T, Schulz R (2011) Assessing the influence of vegetation on reduction of pesticide concentration in experimental surface flow constructed wetlands: application of the toxic units approach. Ecol Eng 37(6):955–962

    Article  Google Scholar 

  • Fang H, Dong B, Yan H, Tang F, Yu Y (2010) Characterization of a bacterial strain capable of degrading DDT congeners and its use in bioremediation of contaminated soil. J Hazard Mater 184(1–3):281–289

    Article  CAS  Google Scholar 

  • Fernandez RT, Kort DR, Cregg BM, Rowe B, Vandervoort C (2012) Remediation of metalaxyl, trifluralin, and nitrate from nursery runoff using container-grown woody ornamentals and phytoremediation areas. Ecol Eng 47:254–263

    Article  Google Scholar 

  • Ferrell JA, Witt WW, Vencill WK (2003) Sulfentrazone absorption by plant roots increases as soil or solution pH decreases. Weed Sci 51(5):826–830

    Article  CAS  Google Scholar 

  • Fioravante IA, Barbosa FAR, Augusti R, Magalhães SMS (2010) Removal of methyl parathion by cyanobacteria Microcystis novacekii under culture conditions. J Environ Monit 12(6):1302–1306

    Article  CAS  Google Scholar 

  • Fishel F (1997) Pesticides and the environment. Insects and Diseases

  • Florêncio MH, Pires E, Castro AL, Nunes MR, Borges C, Costa FM (2004) Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterisation of intermediates. Chemosphere 55(3):345–355

    Article  Google Scholar 

  • Gao ZY, Zhang H (2012) Photodegradation of pentachlorophenol using NiO-coupled NiTiO3 nanocomposites from layered precursor as photocatalysts. Adv Mater Res, 396–398, 411–416. https://doi.org/10.4028/www.scientific.net/amr.396-398.411

  • Gatica E, Possetto D, Reynoso A, Natera J, Miskoski S, De Gerónimo E, Bregliani M, Pajares A, Massad WA (2019) Photo-fenton and riboflavin-photosensitized processes of the isoxaflutole herbicide. Photochem Photobiol 95(3):901–908

    Article  CAS  Google Scholar 

  • Gawronski SW, Gawronska H (2007) Plant taxonomy for phytoremediation. In: Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents. Springer, Dordrecht, pp 79–88

  • Gent MP, White JC, Parrish ZD, Isleyen M, Eitzer BD, Mattina MI (2007) Uptake and translocation of p,p′-dichlorodiphenyldichloroethylene supplied in hydroponics solution to Cucurbita. Environ Toxicol Chem Int J 26(12):2467–2475

    Article  CAS  Google Scholar 

  • Ghori Z, Iftikhar H, Bhatti MF, Sharma I, Kazi AG, Ahmad P (2016) Phytoextraction: the use of plants to remove heavy metals from soil. In: Plant metal interaction. Elsevier, pp 385–409

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1836

    Article  Google Scholar 

  • Guerin TF (1999) Natural attenuation of a low mobility chlorinated insecticide in low-level and high-level contaminated soil: a feasibility study. Remediat J 9(4):51–63

    Article  Google Scholar 

  • Gupta VK, Eren T, Atar N, Yola ML, Parlak C, Karimi-Maleh H (2015) CoFe2O4@ TiO2 decorated reduced graphene oxide nanocomposite for photocatalytic degradation of chlorpyrifos. J Mol Liq 208:122–129

    Article  Google Scholar 

  • Hamada M, Matar A, Bashir A (2015) Carbaryl degradation by bacterial isolates from a soil ecosystem of the Gaza Strip. Braz J Microbiol 46(4):1087–1091

    Article  CAS  Google Scholar 

  • Hatzios KK, Penner D (1982) Metabolism of herbicides in higher plants. Burgess Publishing Company, Minneapolis

    Google Scholar 

  • Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145

    Article  Google Scholar 

  • Hoagland RE, Zablotowicz RM, Hall JC (2001) Pesticide metabolism in plants and microorganisms: an overview

  • Hodgson E (2012) Biotransformation of individual pesticides: some examples. In: Pesticide biotransformation and disposition, Chap 9, 3rd edn, Academic Press, Elsevier Oxford, UK, pp 195–207

    Chapter  Google Scholar 

  • Hong MS, Farmayan WF, Dortch IJ, Chiang CY, McMillan SK, Schnoor JL (2001) Phytoremediation of MTBE from a groundwater plume. Environ Sci Technol 35(6):1231–1239

    Article  CAS  Google Scholar 

  • Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, Wu Z (2018) Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23(9):2313

    Article  Google Scholar 

  • Hustert K, Moza PN, Kettrup A (1999) Photochemical degradation of carboxin and oxycarboxin in the presence of humic substances and soil. Chemosphere 38(14):3423–3429

    Article  CAS  Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. BioMed Res Int 2014:1–6

    Google Scholar 

  • Inui H, Ueyama Y, Shiota N, Ohkawa Y, Ohkawa H (1999) Herbicide metabolism and cross-tolerance in transgenic potato plants expressing human CYP1A1. Pestic Biochem Physiol 64(1):33–46

    Article  CAS  Google Scholar 

  • Ishag AES, Abdelbagi AO, Hammad AM, Elsheikh EA, Elsaid OE, Hur JH, Laing MD (2016) Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J Agric Food Chem 64(45):8491–8498

    Article  CAS  Google Scholar 

  • Jafari SJ, Moussavi G, Hossaini H (2016) Degradation and mineralization of diazinon pesticide in UVC and UVC/TiO2 process. Desalin Water Treat 57(8):3782–3790

    Article  CAS  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496(7445):347–350

    Article  CAS  Google Scholar 

  • Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87(3):278–284

    Article  CAS  Google Scholar 

  • Johnsen AR, Karlson U (2004) Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 63(4):452–459

    Article  CAS  Google Scholar 

  • Jonidi-Jafari A, Shirzad-Siboni M, Yang JK, Naimi-Joubani M, Farrokhi M (2015) Photocatalytic degradation of diazinon with illuminated ZnO–TiO2 composite. J Taiwan Inst Chem Eng 50:100–107

    Article  CAS  Google Scholar 

  • Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Biodegradation-life of science, pp 289–320

  • Kah M, Beulke S, Brown CD (2007) Factors influencing degradation of pesticides in soil. J Agric Food Chem 55(11):4487–4492

    Article  CAS  Google Scholar 

  • Kambiranda DM, Asraful-Islam SM, Cho KM, Math RK, Lee YH, Kim H, Yun HD (2009) Expression of esterase gene in yeast for organophosphates biodegradation. Pestic Biochem Physiol 94(1):15–20

    Article  CAS  Google Scholar 

  • Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22(1):215–228

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:1–11

    Article  Google Scholar 

  • Karns JS, Muldoon MT, Mulbry WW, Derbyshire MK, Kearney PC (1987) Use of microorganisms and microbial systems in the degradation of pesticides 334:156–170

  • Karthikeyan R, Davis LC, Erickson LE, Al-Khatib K, Kulakow PA, Barnes PL, Hutchinson SL, Nurzhanova AA (2003) Studies on responses of non-target plants to pesticides: A. Hazardous Substance Research Center, Kansas State University, Lawrence, p 10

  • Knuteson SL, Whitwell T, Klaine SJ (2002) Influence of plant age and size on simazine toxicity and uptake. J Environ Qual 31(6):2096–2103

    Article  CAS  Google Scholar 

  • Kong L, Zhu S, Zhu L, Xie H, Su K, Yan T, Wang J, Wang J, Wang F, Sun F (2013) Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4. J Environ Sci 25(11):2257–2264

    Article  CAS  Google Scholar 

  • Konstantinou IK, Sakellarides TM, Sakkas VA, Albanis TA (2001) Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol 35(2):398–405

    Article  CAS  Google Scholar 

  • Kopf G, Schwack W (1995) Photodegradation of the carbamate insecticide ethiofencarb. Pestic Sci 43(4):303–309

    Article  CAS  Google Scholar 

  • Kopytko M, Correa-Torres SN, Plata A (2016) Sequential reductive and oxidative conditions used to biodegradation of organochlorine pesticides by native bacteria. In: IOP conference series: materials science and engineering, vol 138, no. 1. IOP Publishing, p 012018

  • Kouras-Hadef S, Hamdache S, de Sainte-Claire P, Sleiman M, Jaber F, Richard C (2018) Light induced degradation of the fungicide Thiophanate-methyl in water: formation of a sensitizing photoproduct. J Photochem Photobiol, A 360:262–269

    Article  CAS  Google Scholar 

  • Lan Q, Li FB, Sun CX, Liu CS, Li XZ (2010) Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination. J Hazard Mater 174(1–3):64–70

    Article  CAS  Google Scholar 

  • Li C, Lv T, Liu W, Zang H, Cheng Y, Li D (2017) Efficient degradation of chlorimuron-ethyl by a bacterial consortium and shifts in the aboriginal microorganism community during the bioremediation of contaminated-soil. Ecotoxicol Environ Saf 139:423–430

    Article  CAS  Google Scholar 

  • Liang Y, Yuan J, Jing Y (2017) Study on photo-degradation of pyrethroid in jiulong river estuary waters. Feb-fresenius Environ Bulletin 26(6):4097–4102

    CAS  Google Scholar 

  • Lin YJ, Lin C, Yeh KJ, Lee A (2000) Photodegradation of the herbicides butachlor and ronstar using natural sunlight and diethylamine. Bull Environ Contam Toxicol 64(6):780–785

    Article  CAS  Google Scholar 

  • Lin CH, Lerch RN, Garrett HE, George MF (2008) Bioremediation of atrazine-contaminated soil by forage grasses: Transformation, uptake, and detoxification. J Environ Qual 37(1):196–206

    Article  CAS  Google Scholar 

  • Liu X, Wu X, Long Z, Zhang C, Ma Y, Hao X, Zhang H, Pan C (2015) Photodegradation of imidacloprid in aqueous solution by the metal-free catalyst graphitic carbon nitride using an energy-saving lamp. J Agric Food Chem 63(19):4754–4760

    Article  CAS  Google Scholar 

  • Liu ZY, Chen X, Shi Y, Su ZC (2012) Bacterial degradation of chlorpyrifos by Bacillus cereus. Adv Mater Res, 356–360, 676–680. https://doi.org/10.4028/www.scientific.net/amr.356-360.676

  • Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB (2018) Pesticide toxicity: a mechanistic approach. EXCLI J 17:1101

    Google Scholar 

  • Lv T, Carvalho PN, Casas ME, Bollmann UE, Arias CA, Brix H, Bester K (2017) Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environ Pollut 229:362–370

    Article  CAS  Google Scholar 

  • Ma X, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37(11):2534–2539

    Article  CAS  Google Scholar 

  • Macounová K, Urban J, Krýsová H, Krýsa J, Jirkovský J, Ludvık J (2001) Photodegradation of metamitron (4-amino-6-phenyl-3-methyl-1, 2, 4-triazin-5 (4H)-one) on TiO2. J Photochem Photobiol, A 140(1):93–98

    Article  Google Scholar 

  • Mahalakshmi M, Priya SV, Arabindoo B, Palanichamy M, Murugesan V (2009) Photocatalytic degradation of aqueous propoxur solution using TiO2 and Hβ zeolite-supported TiO2. J Hazard Mater 161(1):336–343

    Article  CAS  Google Scholar 

  • Mahmood I, Imadi SR, Shazadi K, Gul A, Hakeem KR (2016) Effects of pesticides on environment. In: Plant, soil and microbes. Springer, Cham, pp 253–269

  • Malghani S, Chatterjee N, Yu HX, Luo Z (2009) Isolation and identification of profenofos degrading bacteria. Braz J Microbiol 40(4):893–900

    Article  CAS  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61(6):844–855

    Article  CAS  Google Scholar 

  • Matsumoto E, Kawanaka Y, Yun SJ, Oyaizu H (2009) Bioremediation of the organochlorine pesticides, dieldrin and endrin, and their occurrence in the environment. Appl Microbiol Biotechnol 84(2):205–216

    Article  CAS  Google Scholar 

  • Matsumura F (1982) Degradation of pesticides in the environment by microorganisms and sunlight. In: Matsumura F, Murti CRK (eds) Biodegradation of pesticides. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4088-1_3

    Chapter  Google Scholar 

  • Matsuo S, Yamazaki K, Gion K, Eun H, Inui H (2011) Structure-selective accumulation of polychlorinated biphenyls in Cucurbita pepo. J Pestic Sci 36(3):363–369

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Article  CAS  Google Scholar 

  • Mercado-Borrayo BM, Cram Heydrich S, Rosas Pérez I, Hernández Quiroz M, De León P, Hill C (2015) Organophosphorus and organochlorine pesticides bioaccumulation by Eichhornia crassipes in irrigation canals in an urban agricultural system. Int J Phytorem 17(7):701–708

    Article  CAS  Google Scholar 

  • Mijin D, Savić M, Snežana P, Smiljanić A, Glavaški O, Jovanović M, Petrović S (2009) A study of the photocatalytic degradation of metamitron in ZnO water suspensions. Desalination 249(1):286–292

    Article  CAS  Google Scholar 

  • Mir NA, Khan A, Muneer M, Vijayalakhsmi S (2014) Photocatalytic degradation of trifluralin, clodinafop-propargyl, and 1, 2-dichloro-4-nitrobenzene as determined by gas chromatography coupled with mass spectrometry. Chromatogr Res Int 2014:1–9

    Article  Google Scholar 

  • Mitton FM, Miglioranza KS, Gonzalez M, Shimabukuro VM, Monserrat JM (2014) Assessment of tolerance and efficiency of crop species in the phytoremediation of DDT polluted soils. Ecol Eng 71:501–508

    Article  Google Scholar 

  • Mitton FM, Gonzalez M, Monserrat JM, Miglioranza KS (2018) DDTs-induced antioxidant responses in plants and their influence on phytoremediation process. Ecotoxicol Environ Saf 147:151–156

    Article  CAS  Google Scholar 

  • Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M (2006) Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in γ-hexachlorocyclohexane degradation. Appl Environ Microbiol 72(11):6923–6933

    Article  CAS  Google Scholar 

  • Mohamed MS (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12(4):6–7

    Google Scholar 

  • Moklyachuk L, Gorodiska I, Slobodenyuk O, Petryshyna V (2010) Phytoremediation of soil polluted with obsolete pesticides in Ukraine. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination (pp. 113–124). Springer, Dordrecht

  • Moklyachuk L, Petryshyna V, Slobodenyuk O, Zatsarinna Y (2012) Sustainable strategies of phytoremediation of the sites polluted with obsolete pesticides. In: Vitale K (ed) Environmental and food safety and security for South-East Europe and Ukraine. NATO science for peace and security series C: environmental security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2953-7_8

    Chapter  Google Scholar 

  • Moore MT, Locke MA (2012) Phytotoxicity of atrazine, S-metolachlor, and permethrin to Typha latifolia (Linneaus) germination and seedling growth. Bull Environ Contam Toxicol 89(2):292–295

    Article  CAS  Google Scholar 

  • Moore MT, Locke MA, Kröger R (2017) Mitigation of atrazine, S-metolachlor, and diazinon using common emergent aquatic vegetation. J Environ Sci 56:114–121

    Article  CAS  Google Scholar 

  • Muhamad SG (2010) Kinetic studies of catalytic photodegradation of chlorpyrifos insecticide in various natural waters. Arab J Chem 3(2):127–133

    Article  CAS  Google Scholar 

  • Murano H, Otani T, Seike N, Sakai M (2010) Dieldrin uptake and translocation in plants growing in hydroponic medium. Environ Toxicol Chem 29(1):142–148

    Article  CAS  Google Scholar 

  • Myresiotis CK, Vryzas Z, Papadopoulou-Mourkidou E (2014) Enhanced root uptake of acibenzolar-S-methyl (ASM) by tomato plants inoculated with selected Bacillus plant growth-promoting rhizobacteria (PGPR). Appl Soil Ecol 77:26–33

    Article  Google Scholar 

  • Namiki S, Otani T, Motoki Y, Seike N, Iwafune T (2018) Differential uptake and translocation of organic chemicals by several plant species from soil. J Pestic Sci 43:96–107

    Article  CAS  Google Scholar 

  • Nayak S, Muniz J, Sales CM, Tikekar RV (2016) Fructose as a novel photosensitizer: characterization of reactive oxygen species and an application in degradation of diuron and chlorpyrifos. Chemosphere 144:1690–1697

    Article  CAS  Google Scholar 

  • Neumann D, Heuer A, Hemkemeyer M, Martens R, Tebbe CC (2014) Importance of soil organic matter for the diversity of microorganisms involved in the degradation of organic pollutants. ISME J 8(6):1289–1300

    Article  CAS  Google Scholar 

  • Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L (2016) Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health 4:148

    Article  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Bio-technol 12(4):421–444

    Article  CAS  Google Scholar 

  • Olette R, Couderchet M, Biagianti S, Eullaffroy P (2008) Toxicity and removal of pesticides by selected aquatic plants. Chemosphere 70(8):1414–1421

    Article  CAS  Google Scholar 

  • Orozco J, Vilela D, Valdés-Ramírez G, Fedorak Y, Escarpa A, Vazquez-Duhalt R, Wang J (2014) Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors. Chem A Eur J 10:2866–2871

    Article  Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. In: Biodegradation-life of Science, pp 251–287

  • Pal R, Chakrabarti K, Chakraborty A, Chowdhury A (2010) Degradation and effects of pesticides on soil microbiological parameters-a review. Int J Agric Res 5(8):625–643

    Article  CAS  Google Scholar 

  • Pan X, Wang S, Shi N, Fang H, Yu Y (2018) Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1. Ecotoxicol Environ Saf 150:34–39

    Article  CAS  Google Scholar 

  • Parte SG, Mohekar AD, Kharat AS (2017) Microbial degradation of pesticide: a review. Afr J Microbiol Res 11(24):992–1012

    Article  CAS  Google Scholar 

  • Pascal-Lorber, S. and Laurent, F., 2011. Phytoremediation techniques for pesticide contaminations. In: Alternative farming systems, biotechnology, drought stress and ecological fertilisation. Springer, Dordrecht, pp 77–105

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) Phytoremediation and hyperaccumulator plants. In: Molecular biology of metal homeostasis and detoxification. Springer, Berlin, pp 299–340

  • Peiter A, Fiuza TE, de Matos R, Antunes AC, Antunes SRM, Lindino CA (2017) System development for concomitant degradation of pesticides and power generation. Water Air Soil Pollut 228(3):114

    Article  Google Scholar 

  • Peñuela GA, Barceló D (1998) Photodegradation and stability of chlorothalonil in water studied by solid-phase disk extraction, followed by gas chromatographic techniques. J Chromatogr A 823(1–2):81–90

    Article  Google Scholar 

  • Pérez-Lucas G, Vela N, El Aatik A, Navarro S (2018) Environmental risk of groundwater pollution by pesticide leaching through the soil profile. In: Pesticides-use and misuse and their impact in the environment. IntechOpen

  • Perucci P, Dumontet S, Bufo SA, Mazzatura A, Casucci C (2000) Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol Fertil Soils 32(1):17–23

    Article  CAS  Google Scholar 

  • Phuinthiang P, Kajitvichyanukul P (2019) Degradation of paraquat from contaminated water using green TiO2 nanoparticles synthesized from Coffea arabica L. in photocatalytic process. Water Sci Technol 79(5):905–910

    Article  CAS  Google Scholar 

  • Pileggi M, Pileggi SA, Sadowsky MJ (2020) Herbicide bioremediation: from strains to bacterial communities. Heliyon 6(12):e05767

    Article  Google Scholar 

  • Pinski A, Betekhtin A, Hupert-Kocurek K, Mur LA, Hasterok R (2019) Defining the genetic basis of plant–endophytic bacteria interactions. Int J Mol Sci 20(8):1947

    Article  CAS  Google Scholar 

  • Pointing S (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57(1):20–33

    CAS  Google Scholar 

  • Qu M, Li H, Li N, Liu G, Zhao J, Hua Y, Zhu D (2017) Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. Chemosphere 168:1515–1522

    Article  CAS  Google Scholar 

  • Racke KD, Fontaine DD, Yoder RN, Miller JR (1994) Chlorpyrifos degradation in soil at termiticidal application rates. Pestic Sci 42(1):43–51

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Rebelo SL, Melo A, Coimbra R, Azenha ME, Pereira MM, Burrows HD, Sarakha M (2007) Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers. Environ Chem Lett 5(1):29–33

    Article  CAS  Google Scholar 

  • Riechers DE, Vaughn KC, Molin WT (2005) The role of plant glutathione S-transferases in herbicide metabolism. 899:216–232

  • Rifai A, Souissi Y, Genty C, Clavaguera C, Bourcier S, Jaber F, Bouchonnet S (2013) Ultraviolet degradation of procymidone–structural characterization by gas chromatography coupled with mass spectrometry and potential toxicity of photoproducts using in silico tests. Rapid Commun Mass Spectrom 27(13):1505–1516

    Article  CAS  Google Scholar 

  • Rissato SR, Galhiane MS, Fernandes JR, Gerenutti M, Gomes HM, Ribeiro R, Almeida MVD (2015) Evaluation of Ricinus communis L. for the phytoremediation of polluted soil with organochlorine pesticides. BioMed Res Int 2015:1–8

    Article  Google Scholar 

  • Rocha I, Ma Y, Souza-Alonso P, Vosátka M, Freitas H, Oliveira RS (2019) Seed coating: a tool for delivering beneficial microbes to agricultural crops. Front Plant Sci 10:1357

    Article  Google Scholar 

  • Romeh AA (2015) Enhancing agents for phytoremediation of soil contaminated by cyanophos. Ecotoxicol Environ Saf 117:124–131

    Article  Google Scholar 

  • Romeh AAA (2017) Phytoremediation of azoxystrobin and its degradation products in soil by P. major L. under cold and salinity stress. Pestic Biochem Physiol 142:21–31

    Article  CAS  Google Scholar 

  • Romeh AA, Hendawi MY (2017) Biochemical interactions between Glycine max L. silicon dioxide (SiO2) and plant growth-promoting bacteria (PGPR) for improving phytoremediation of soil contaminated with fenamiphos and its degradation products. Pestic Biochem Physiol 142:32–43

    Article  CAS  Google Scholar 

  • Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754

    Article  CAS  Google Scholar 

  • Salam JA, Das N (2014) Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: kinetic study, enzyme analysis and biodegradation pathway. World J Microbiol Biotechnol 30(4):1301–1313

    Article  CAS  Google Scholar 

  • Salam JA, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29(3):475–487

    Article  Google Scholar 

  • Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biochem Sci 17(2):82–84

    Article  CAS  Google Scholar 

  • Sanz-Asensio J, Plaza-Medina M, Martınez-Soria MT, Perez-Clavijo M (1999) Study of photodegradation of the pesticide ethiofencarb in aqueous and non-aqueous media, by gas chromatography–mass spectrometry. J Chromatogr A 840(2):235–247

    Article  CAS  Google Scholar 

  • Schwack W, Bourgeois B, Walker F (1995) Fungicides and photochemistry photodegradation of the dicarboximide fungicide procymidone. Chemosphere 31(9):4033–4040

    Article  CAS  Google Scholar 

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48(1):65

    Article  CAS  Google Scholar 

  • Segura A, Rodríguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb Biotechnol 2(4):452–464

    Article  CAS  Google Scholar 

  • Sehrawat A, Phour M, Kumar R, Sindhu SS (2021) Bioremediation of pesticides: an eco-friendly approach for environment sustainability. In: Microbial rejuvenation of polluted environment. Springer, Singapore, pp 23–84

  • Shamsedini N, Baghapour MA, Dehghani M, Nasseri S (2015) Photodegradation of atrazine by ultraviolet radiation in different conditions. J Health Sci Surveill Syst 3(3):94–100

    Google Scholar 

  • Shamsedini N, Dehghani M, Nasseri S, Baghapour MA (2017) Photocatalytic degradation of atrazine herbicide with Illuminated Fe+3–TiO2 Nanoparticles. J Environ Health Sci Eng 15(1):1–10

    Article  Google Scholar 

  • Sharma S, Banerjee K, Choudhury PP (2012) Degradation of chlorimuron-ethyl by Aspergillus niger isolated from agricultural soil. FEMS Microbiol Lett 337(1):18–24

    Article  CAS  Google Scholar 

  • Shim H, Chauhan S, Ryoo D, Bowers K, Thomas SM, Canada KA, Burken JG, Wood TK (2000) Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl Environ Microbiol 66(11):4673–4678

    Article  CAS  Google Scholar 

  • Siciliano SD, Fortin N, Mihoc A, Wisse G, Labelle S, Beaumier D, Ouellette D, Roy R, Whyte LG, Banks MK, Schwab P (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67(6):2469–2475

    Article  CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and a soil slurry. J Agric Food Chem 50(18):5070–5076

    Article  CAS  Google Scholar 

  • Singh B (2014) Review on microbial carboxylesterase: general properties and role in organophosphate pesticides degradation. Biochem Mol Biol 2:1–6

    Article  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30(3):428–471

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Morgan JAW, Wright DJ (2003) Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69(9):5198–5206

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Nadda J, Singh Y, Garg A, Kaur N, Gulati A (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ. Sci. Pollut. Res. 18(8):1351–1359

    Article  CAS  Google Scholar 

  • Singh DP, Khattar JIS, Kaur M, Kaur G, Gupta M, Singh Y (2013) Anilofos tolerance and its mineralization by the cyanobacterium Synechocystis sp. strain PUPCCC 64. PLoS One 8(1):e53445

    Article  CAS  Google Scholar 

  • Somasundaram L, Coats JR, Racke KD (1989) Degradation of pesticides in soil as influenced by the presence of hydrolysis metabolites. J Environ Sci Health B 24(5):457–478

    Article  Google Scholar 

  • Sorolla MG II, Dalida ML, Khemthong P, Grisdanurak N (2012) Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. J Environ Sci 24(6):1125–1132

    Article  CAS  Google Scholar 

  • Stoytcheva M (2011) Pesticides in the modern world: effects of pesticides exposure. InTech, Croatia

    Book  Google Scholar 

  • Sun H, Xu J, Yang S, Liu G, Dai S (2004) Plant uptake of aldicarb from contaminated soil and its enhanced degradation in the rhizosphere. Chemosphere 54(4):569–574

    Article  CAS  Google Scholar 

  • Szczygłowska M, Piekarska A, Konieczka P, Namieśnik J (2011) Use of brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12(11):7760–7771

    Article  Google Scholar 

  • Tambat S, Umale S, Sontakke S (2018) Photocatalytic degradation of metamitron using CeO2 and Fe/CeO2. Integr Ferroelectr 186(1):54–61

    Article  CAS  Google Scholar 

  • Taştan BE, Dönmez G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Physiol 118:33–37

    Article  Google Scholar 

  • Thengodkar RRM, Sivakami S (2010) Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21(4):637–644

    Article  CAS  Google Scholar 

  • Thuyet DQ, Watanabe H, Yamazaki K, Takagi K (2011) Photodegradation of imidacloprid and fipronil in rice–paddy water. Bull Environ Contam Toxicol 86(5):548–553

    Article  CAS  Google Scholar 

  • Tiwari B, Chakraborty S, Srivastava AK, Mishra AK (2017) Biodegradation and rapid removal of methyl parathion by the paddy field cyanobacterium Fischerella sp. Algal Res 25:285–296

    Article  Google Scholar 

  • Torres-Duarte C, Roman R, Tinoco R, Vazquez-Duhalt R (2009) Halogenated pesticide transformation by a laccase–mediator system. Chemosphere 77(5):687–692

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M, McFarlane C (1994) Model for uptake of xenobiotics into plants: validation with bromacil experiments. Environ Toxicol Chem Int J 13(3):413–422

    Article  CAS  Google Scholar 

  • Tripathy S, Paul B, Khalua RK (2014) Phytoremediation: proficient to prevent pesticide pollution. Int J Innov Sci Eng Technol 1(10):282–287

    Google Scholar 

  • Tu S, Ma LQ, Fayiga AO, Zillioux EJ (2004) Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. Int J Phytorem 6(1):35–47

    Article  CAS  Google Scholar 

  • Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51(4):472–495

    Article  Google Scholar 

  • Vadaei S, Faghihian H (2018) Enhanced visible light photodegradation of pharmaceutical pollutant, warfarin by nano-sized SnTe, effect of supporting, catalyst dose, and scavengers. Environ Toxicol Pharmacol 58:45–53

    Article  CAS  Google Scholar 

  • Vela N, Pérez-Lucas G, Fenoll J, Navarro S (2017) Recent overview on the abatement of pesticide residues in water by photocatalytic treatment using TiO2. In: Application of titanium dioxide. https://doi.org/10.5772/intechopen.68802

  • Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Rev Environ Sci Bio-technol 13(4):429–466

    Article  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Pollut 148(1):148–154

    Article  CAS  Google Scholar 

  • Wamhoff H, Schneider V (1999) Photodegradation of imidacloprid. J Agric Food Chem 47(4):1730–1734

    Article  CAS  Google Scholar 

  • Wang FY, Tong RJ, Shi ZY, Xu XF, He XH (2011) Inoculations with arbuscular mycorrhizal fungi increase vegetable yields and decrease phoxim concentrations in carrot and green onion and their soils. PLoS One 6(2):e16949

    Article  CAS  Google Scholar 

  • Wang Y, Sun C, Zhao X, Cui B, Zeng Z, Wang A, Liu G, Cui H (2016) The application of nano-TiO2 photo semiconductors in agriculture. Nanoscale Res Lett 11(1):1–7

    Article  Google Scholar 

  • Wang X, Hou X, Liang S, Lu Z, Hou Z, Zhao X, Sun F, Zhang H (2018) Biodegradation of fungicide Tebuconazole by Serratia marcescens strain B1 and its application in bioremediation of contaminated soil. Int Biodeterior Biodegrad 127:185–191

    Article  CAS  Google Scholar 

  • White JC, Kottler BD (2002) Citrate-mediated increase in the uptake of weathered 2, 2-bis (p-chlorophenyl) 1, 1-dichloroethylene residues by plants. Environ Toxicol Chem Int J 21(3):550–556

    Article  CAS  Google Scholar 

  • White JC, Parrish ZD, Isleyen M, Gent MP, Iannucci-Berger W, Eitzer BD, Mattina MJI (2005) Uptake of weathered p, p′-DDE by plant species effective at accumulating soil elements. Microchem J 81(1):148–155

    Article  CAS  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Biores Technol 97(8):1050–1054

    Article  CAS  Google Scholar 

  • Xu XJ, Lai GL, Chi CQ, Zhao JY, Yan YC, Nie Y, Wu XL (2018) Purification of eutrophic water containing chlorpyrifos by aquatic plants and its effects on planktonic bacteria. Chemosphere 193:178–188

    Article  CAS  Google Scholar 

  • Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359

    Article  Google Scholar 

  • Yousef YA, El-Khatib F (2007) Photodegradation of carbaryl in acetonitrile solution. Spectrosc Lett 40(4):573–582

    Article  CAS  Google Scholar 

  • Yousef-Coronado F, Travieso ML, Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol Lett 288(1):118–124

    Article  CAS  Google Scholar 

  • Yousif E, Haddad R (2013) Photodegradation and photostabilization of polymers, especially polystyrene. Springerplus 2(1):1–32

    Article  CAS  Google Scholar 

  • Youssef L, Younes G, Al-Oweini R (2019) Photocatalytic degradation of atrazine by heteropolyoxotungstates. J Taibah Univ Sci 13(1):274–279

    Article  Google Scholar 

  • Yu YL, Chen YX, Luo YM, Pan XD, He YF, Wong MH (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere 50(6):771–774

    Article  CAS  Google Scholar 

  • Zaharia M, Maftei D, Dumitras-Hutanu CA, Pui A, Lagobo ZC, Pintilie O, Gradinaru R (2013) Biodegradation of pesticides DINOCAP and DNOC by yeast suspensions in a batch system. Rev Chim (Bucharest) 64:388–392

    CAS  Google Scholar 

  • Zahedi F, Behpour M, Ghoreishi SM, Khalilian H (2015) Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Sol Energy 120:287–295

    Article  CAS  Google Scholar 

  • Zang H, Yu Q, Lv T, Cheng Y, Feng L, Cheng X, Li C (2016) Insights into the degradation of chlorimuron-ethyl by Stenotrophomonas maltophilia D310–3. Chemosphere 144:176–184

    Article  CAS  Google Scholar 

  • Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20(2):337–347

    Article  Google Scholar 

  • Zhang H, Mu W, Hou Z, Wu X, Zhao W, Zhang X, Pan H, Zhang S (2012) Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80. J Environ Sci Health B 47(3):153–160

    Article  CAS  Google Scholar 

  • Zhang L, Shen Y, Hui F, Niu Q (2015) Degradation of residual lincomycin in fermentation dregs by yeast strain S9 identified as Galactomyces geotrichum. Ann Microbiol 65(3):1333–1340

    Article  CAS  Google Scholar 

  • Zhang H, Zhang Y, Hou Z, Wang X, Wang J, Lu Z, Zhao X, Sun F, Pan H (2016) Biodegradation potential of deltamethrin by the Bacillus cereus strain Y1 in both culture and contaminated soil. Int Biodeterior Biodegrad 106:53–59

    Article  Google Scholar 

  • Zhao S, Arthur EL, Moorman TB, Coats JR (2005) Evaluation of microbial inoculation and vegetation to enhance the dissipation of atrazine and metolachlor in soil. Environ Toxicol Chem Int J 24(10):2428–2434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are highly thankful to University Grants Commission for providing financial assistance under UPE (University with Potential for Excellence) scheme and DRS SAP programmes and Guru Nanak Dev University, Amritsar, for providing necessary infrastructure to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kaur.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Editorial responsibility: Samareh Mirkia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Singh, D., Kumari, A. et al. Pesticide residues degradation strategies in soil and water: a review. Int. J. Environ. Sci. Technol. 20, 3537–3560 (2023). https://doi.org/10.1007/s13762-021-03696-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03696-2

Keywords

Navigation