Skip to main content
Log in

Photocatalytic degradation of paraquat dichloride in the presence of ZnO.WO3 composite

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The study reports the synthesis of a series of ZnO.WO3 composites in different mole ratios of 40:60, 60:40, 80:20 and 20:80. They were characterized by XRD, DSC, FT–IR and TGA. The potential of these composites for catalyzing the degradation of paraquat dichloride was explored under UV light. The study revealed that the composition of all the prepared composites was the same irrespective of using different mole ratios of two components. Thus, 40:60 composite was used for further experimentation on photodegradation. The effect of various factors like pH, temperature, catalyst dose and pesticide concentration was studied for the photodegradation of paraquat dichloride. An alkaline pH was found to be more favorable for accelerating the process of photocatalytic degradation. ZnO.WO3 was found to be stable for at least three cycles of reuse. Moreover, the catalyst yielded a 88.3% degradation in the presence of ZnO.WO3 that was only 65% in the presence of ZnO and 51.3% in the presence of WO3 alone. The potential of the catalyst was also explored for real polluted wastewater obtained from runoff of agricultural fields. The kinetics of photodegradation was explored by applying different models, i.e., single first-order, indeterminate-order, first-order multicomponent and double first-order parallel models without normalization of data. It is suggested that this composite may be used not only for the remediation of waters contaminated with persistent paraquat dichloride but its potential for degrading other hazardous pollutants may also be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The authors declare the transparency and availability of data and material.

References

  • Asfaram A, Ghaedi M, Agarwal S, Tyagi I, Gupta VK (2015) Removal of basic dye Auramine-O by ZnS: Cu nanoparticles loaded on activated carbon: optimization of parameters using response surface methodology with central composite design. RSC Adv 5:18438–18450

    Article  CAS  Google Scholar 

  • Ali R, Hassan SH (2008) Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst. Malays J Anal Sci 12:1

    Google Scholar 

  • Aliyu HS, Abdullah AH, Abbas Z (2015) Enhanced photocatalytic efficiency of microwave synthesized Cu/ZnO nanocomposite. Intl J Multidiscip Res Dev 3:612–615

    Google Scholar 

  • Arularasu MV, Sundaram R (2016) Synthesis and characterization of nanocrystalline ZnWO4-ZnO composites and their humidity sensing performance. Sens Bio-Sens Res 11(20):25

    Google Scholar 

  • Badli NA, Wan RA, Wan A, Bakar A, Yulia L (2017) Role of heterojunction ZrTiO4/ZrTi2O6/TiO2 photocatalyst towards the degradation of paraquat dichloride and optimization study by Box-Behnken design. Arabian J Chem 10:935–943

    Article  CAS  Google Scholar 

  • Bang YJ, Kim J, Lee WJ (2017) Paraquat use among farmers in Korea after the ban. Arch Environ Occup Health 72(23):1–234. https://doi.org/10.1080/19338244.2016.1192982

    Article  CAS  Google Scholar 

  • Cantavenera MJ, Catanzaro I, Loddo V, Palmisano L, Sciandrello G (2007) Photocatalytic degradation of paraquat and genotoxicity of its intermediate products. J Photochem Photobiol, A: Chem 185:277–282

    Article  CAS  Google Scholar 

  • Cha ES, Chang SS, Gunnell D, Eddleston M, Khang YH, Lee WJ (2016) Impact of paraquat regulation on suicide in South Korea. Intl J Epidemiol 45:470–479. https://doi.org/10.1093/ije/dyv304

    Article  Google Scholar 

  • Cheah U, Kirkwood RC, Lum K (1998) Degradation of four commonly used pesticides in Malaysian agricultural soils. J Agric Food Chem 46(3):1217

    Article  CAS  Google Scholar 

  • Cheng YW, Chang YS, Ng KH, Wu TY, Cheng CK (2017) Photocatalytic restoration of liquid effluent from oil palm agroindustry in Malaysia using tungsten oxides catalyst. J Clean Prod 162:205–219

    Article  CAS  Google Scholar 

  • Draper N, Smith H (1981) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Eleburuike NA, Bakar WA, Ali R, Omar MF (2016) RSC Adv 6:104082–104093

    Article  CAS  Google Scholar 

  • Florêncio MH, Pires E, Castro AL, Nunes MR, Borges C, Costa FM (2004) Photodegradation of diquat and paraquat in aqueous solutions by titanium dioxide: evolution of degradation reactions and characterization of intermediates. Chemosphere 55:345–355. https://doi.org/10.1016/j.chemosphere.2003.11.013

    Article  CAS  Google Scholar 

  • Gancheva M, Markova-Velichkova M, Atanasova G, Kovacheva D, Uzunov I, Cukeva R (2016) Design and photocatalytic activity of nanosized zinc oxides. Appl Surface Sci 368:258–266

    Article  CAS  Google Scholar 

  • Gao ZC, Lin YL, Xu B, Pan Y, Xia SJ, Gao NY et al (2017) Degradation of acrylamide by the UV/chlorine advanced oxidation process. Chemosphere 187:268–276. https://doi.org/10.1016/j.chemosphere.2017.08.085

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Agarwal S, Shrivastava M (2011) Removal of the hazardous dye: Tartrazine by photodegradation on titanium dioxide surface. Mat Sci Eng: C 31(5):1062–1067

    Article  CAS  Google Scholar 

  • Halfon E, Galassi S, Bruggemann R, Provini A (1996) Selection of priority properties to assess environmental hazard of pesticides. Chemosphere 33:1543

    Article  CAS  Google Scholar 

  • Hamad D, Dhib R, Mehrvar M (2016) Photochemical degradation of aqueous polyvinyl alcohol in a continuous UV/H2O2 process: experimental and statistical analysis. J Polym Environ 24:72–83. https://doi.org/10.1007/s10924-016-0750-2

    Article  CAS  Google Scholar 

  • Huang BR, Lin TC, Chu KT, Yang YK, Lin JC (2013) Field emission properties of zinc oxide/zinc tungstate (ZnO/ZnWO4) composite nanorods. Surf Coat Technol 231:289–292

    Article  CAS  Google Scholar 

  • Hui X, Liu L, Song Y, Huang L, Li Y, Chen Z, Zhang Q, Li H (2016) BN nanosheets modified WO3 photocatalysts for enhancing photocatalytic properties under visible light irradiation. J Alloys Compd 660:48–54

    Article  Google Scholar 

  • Hunge YM, Mahadik MA, Moholkar AV, Bhosale CH (2017) Photoelectrocatalytic degradation of phthalic acid using spray deposited stratified WO3/ZnO thin films under sunlight illumination. Appl Surf Sci 420:764–772

    Article  CAS  Google Scholar 

  • Ingham B, Chong SV, Tallon JL (2005) Layered tungsten oxide-based organic/inorganic hybrid materials I: Infrared and Raman study. J Phys Chem B 109:4936–4940

    Article  CAS  Google Scholar 

  • Ji TH, Hou SF, Du HY, Sun JY (2009) Preparation and Characterization of Hexagonal WO3 Nanobelts. Chin J Inorg Chem 25:818–822

    CAS  Google Scholar 

  • Johar MA, Afzal RA, Alazba ARA, Manzoor U (2015) Photocatalysis and band gap engineeringusing ZnO nanocomposites. Adv Mater Sci Eng. https://doi.org/10.1155/2015/934587

    Article  Google Scholar 

  • Kearney PC, Ruth JM, Zeng Q, Mazzocchi P (1985) UV ozonation of paraquat. J Agric Food Chem 33:953–957. https://doi.org/10.1021/jf00065a044

    Article  CAS  Google Scholar 

  • Khataee A, Sajjadi S, Hasanzadeh A, Vahid B, Joo SW (2017) One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process. J Environ Manag 199:31–45. https://doi.org/10.1016/j.jenvman.2017.04.095

    Article  CAS  Google Scholar 

  • Kleinwechter H, Janzen C, Knipping J, Wiggers H, Roth P (2002) Formation and properties of ZnO nano-particles from gas phase synthesis processes. J Mater Sci 37:4349–4360

    Article  CAS  Google Scholar 

  • Kumar KV, Porkodi K, Rocha F (2008) Langmuir-Hinshelwood kinetics: a theoretical study. Catal Commun 9:82–84

    Article  CAS  Google Scholar 

  • Kumar SG, Rao KSRK (2017) Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl Surf Sci 391:124–148

    Article  CAS  Google Scholar 

  • Kwon YT, Song KY, Lee WI, Choi GJ, Do YR (2000) Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J Catal. https://doi.org/10.1006/jcat.1999.2776

    Article  Google Scholar 

  • Lam SM, Chung J, Ahmad S, Abdul ZA, Mohamed R (2014) Transition metal oxide loaded ZnO nanorods: preparation, characterization and their UV–Vis photocatalytic activities. Sep Purif Technol 132:378–387

    Article  CAS  Google Scholar 

  • Lam SM, Sin JC, Abdullah AZ, Mohamed AR (2015) Sunlight responsive WO3/ZnO nanorods for photocatalytic degradation and mineralization of chlorinated phenoxyacetic acid herbicides in water. J Colloid Interface Sci 450:34–44

    Article  CAS  Google Scholar 

  • Lee JC, Kim MS, Kim BW (2002) Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps. Water Res 36:1776–1782

    Article  CAS  Google Scholar 

  • Maurice G, Sorolla II, Dalida ML, Khemthong P, Grisdanurak N (2012) Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. J Environ Sci 24(6):1125–1132

    Article  Google Scholar 

  • Moafi HF, Zanjanchi MA, Shojaie AF (2013) Tungsten-doped ZnO nanocomposite: synthesis, characterization, and highly active photocatalyst toward dye photodegradation. Mater Chem Phys 139:856–864

    Article  CAS  Google Scholar 

  • Moctezuma E, Leyva E, Monreal E, Villegas N, Infante D (1999) Photocatalytic degradation of the herbicide Paraquat. Chemosphere 39(3):511–517

    Article  CAS  Google Scholar 

  • Moctezuma E, Garcia-Gonzalez R, Zamarripa H, Palestino G, Oros-Ruiz S (2006) Kinetic studies of the photocatalytic degradation of the herbicide, paraquat. J Environ Eng Manag 16:1–10

    Google Scholar 

  • NAFTA (2011) Guidance for Evaluating and Calculating Degradation Kinetics in Environmental Media. December 2011. NAFTA Technical Working Group on Pesticides. Available at: http://www.epa.gov/oppfead1/international/naftatwg/guidance/degradation-kin.pdf. Accessed March 16, 2015

  • Pateiro-Moure M, Nóvoa-Muñoz JC, Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J (2009) Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries. J Hazard Mater 164:769–775. https://doi.org/10.1016/j.jhazmat.2008.08.071

    Article  CAS  Google Scholar 

  • Prasad K, Winnik B, Thiruchelvam MJ (2007) Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain. Environ Health Persp 115:1448

    Article  CAS  Google Scholar 

  • Rashidipour M, Maleki A, Kordi S, Birjandi M, Pajouhi N, Mohammadi E et al (2019) Pectin/chitosan/tripolyphosphate nanoparticles: efficient carriers for reducing soil sorption, cytotoxicity, and mutagenicity of paraquat and enhancing its herbicide activity. J Agric Food Chem 67:5736–5745. https://doi.org/10.1021/acs.jafc.9b01106

    Article  CAS  Google Scholar 

  • Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762

    Article  CAS  Google Scholar 

  • Razali MH, Ruslimie CA, Khairul WM (2013) Modification and performance of TiO2 photocatalyst towards degradation of paraquat dichloride. J Sustain Sci Manag 8(2):244–253

    CAS  Google Scholar 

  • Reczek CR, Birsoy K, Kong H, Martínez-Reyes I, Wang T, Gao P et al (2017) A CRISPR screen identifies a pathway required for paraquat induced cell death. Nat Chem Biol 13:1274–1279. https://doi.org/10.1038/nchembio.2499

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Inter Sci 362(2):337–344

    Article  CAS  Google Scholar 

  • Sandhu JS, Dhiman A, Mahajan R, Sandhu P (2003) Outcome of paraquat poisoning: a five year study. Indian J Nephrol 13:64

    Google Scholar 

  • Saravanan R, Karthikeyan S, Gupta VK, Sekaran G, Narayanan V, Stephen A (2013a) Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mat Sci Eng C33(1):91–98

    Article  Google Scholar 

  • Saravanan R, Gupta VK, Prakash T, Narayanan V, Stephen A (2013b) Synthesis, characterization and photocatalytic activity of novel Hg doped ZnO nanorods prepared by thermal decomposition method. J Mol Liquid 178:88–93

    Article  CAS  Google Scholar 

  • Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015a) ZnO/Ag/Mn2O3 nanocomposite for visible light-induced industrial textile effluent degradation, uric acid and ascorbic acid sensing and antimicrobial activity. RSC Adv 5:34645–34651

    Article  CAS  Google Scholar 

  • Saravanan R, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S (2016) Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641

    Article  Google Scholar 

  • Saravanan R, Khan MM, Gupta VK, Mosquera E, Gracia F, Narayanan V, Stephen A (2015b) ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. J Colloid Interface Sci 15(452):126–133

    Article  Google Scholar 

  • Sharma BK (1998) X-ray diffraction technique, instrumental methods of. Chem Anal 17:329–359

    Google Scholar 

  • Shivaranjani SK, Karthikeyan S (2016) Solar and UV based photo degradation studies on paraquat using homogeneous and heterogeneous photocatalyst. Intl J Eng Res Technol 5:1–7

    Google Scholar 

  • Seiyama T, Yamazoe N, Arai H (1983) Ceramic humidity sensors. Sensors Actuators 4:85–96

    Article  CAS  Google Scholar 

  • Subash B, Krishnakumar MS, Shanthi M (2013) Highly efficient, solar active, and reusable photocatalyst: Zr-Loaded Ag–ZnO for reactive red 120 dye degradation with synergistic effect and dye-sensitized mechanism. Langmuir 29:939–949

    Article  CAS  Google Scholar 

  • Tantriratna P, Wirojanagud W, Neramittagapong S, Wantala K, Grisdanurak N (2011) Optimization of photocatalytic degradation of paraquat over titanium dioxide supported on rice husk silica using Box-Behenken design. Ind J Chem Technol 18:363–371

    CAS  Google Scholar 

  • Upton BR, Hendley P and Skidmore MW (1985) Paraquat: hydrolytic stability in water at pH 5, 7 and 9, Unpublished Study Submitted by ICI Plant Protection Division, Jealott’s Hill Research Centre, Bracknell, Berkshire, UK, Report no. RJ0436B, Syngenta File no. PP148/0666

  • USEPA (2012). Guidance for reviewing environmental fate studies. Environmental fate and effects division. Office of Pesticide Programs. Unitead States Environmental Protection Agency

  • Wang C, Wu M, Yan M, Shen H, Cai F, Hu B, Shi W (2015) Enhanced visible-light photocatalytic activity and the mechanism study of WO3 nanosheets coupled with Ag3PO4 nanocrystals. Ceram Intl 41:6784–6792

    Article  CAS  Google Scholar 

  • Winnik B, Barr DB, Thiruchelvam M (2009) Quantification of paraquat, MPTP, and MPP+ in brain tissue using microwave assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry. Anal Bioanal Chem 395:195

    Article  CAS  Google Scholar 

  • Wu L, Wu Y, Shi YC, Wei HY (2006) Synthesis of ZnO nanorods and their optical absorption in visible-light region. Rare Met 25:68–73

    Article  CAS  Google Scholar 

  • Xie J, Zhou Z, Lian Y, Hao Y, Liu X, Li M, Wei Y (2014) Simple preparation of WO3–ZnO composites with UV–Vis photocatalytic activity and energy storage ability. Ceram Int 40:12519–12524

    Article  CAS  Google Scholar 

  • Yadav BC, Pandey NK, Srivastava Amit K, Sharma Preeti J (2007) Optical humidity sensors based on titania films fabricated by sol–gel and thermal evaporation methods. Meas Sci Technol 18(1):260

    Article  CAS  Google Scholar 

  • Yu C, Yang K, Shu Q, Yu J, Cao F, Li X (2011) Preparation of WO3/ZnO Composite Photocatalyst and Its Photocatalytic Performance. Chin J Catal 32:555–565

    Article  CAS  Google Scholar 

  • Yukawa R, Yamamoto S, Ozawa K, Emori M, Ogawa M, Yamamoto Sh, Fujikawa K, Hobara R, Kitagawa S, Daimon H, Sakama H, Matsuda I (2014) Electron-hole recombination on ZnO(0001) single-crystal surface studied by time-resolved soft X-ray photoelectron spectroscopy. Appl Phys Lett 105:151602

    Article  Google Scholar 

  • Zaranyika MF, Nyandoro MG (1993) Degradation of glyphosate in the aquatic environment: an enzymatic kinetic model that takes into account the microbial degradation of both free and colloidal (sediment) particle adsorbed glyphosate. J Agric Food Chem 41:838

    Article  CAS  Google Scholar 

  • Zheng L, Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2009) Network Structured SnO2/ZnO Heterojunction Nanocatalyst with high photocatalytic activity. Inorg Chem 48:1819–1825

    Article  CAS  Google Scholar 

  • Zahedi F, Behpour M, Ghoreishi SM, Khalilian H (2015) Photocatalytic degradation of paraquat herbicide in the presence TiO2 nanostructure thin films under visible and sun light irradiation using continuous flow photoreactor. Solar Energy 120:287–295

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current research work was carried out at the laboratory of Lahore College for Women University, Lahore. No exclusive grant was obtained for this project.

Funding

The research was not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Tariq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility: Josef Trögl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, S.R., Chotana, G.A. & Rashid, A. Photocatalytic degradation of paraquat dichloride in the presence of ZnO.WO3 composite. Int. J. Environ. Sci. Technol. 19, 2583–2598 (2022). https://doi.org/10.1007/s13762-021-03318-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03318-x

Keywords

Navigation