Skip to main content

Advertisement

Log in

Assessment and classification of lignocellulosic biomass recalcitrance by principal components analysis based on thermogravimetry and infrared spectroscopy

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is a high potential feedstock to produce biofuels and value-added products contributing to sustainable bioeconomy. Nevertheless, biomass recalcitrance reduces the yield of processing routes, and therefore, characterization of structural and chemical factors contributing to this resistance must be carried out by robust but rapid and economical analytical techniques. In this work, the recalcitrance of eight lignocellulosic biomass samples: agave bagasse (AB), banana peel (BP), corn cob (CB), barley straw (BS), orange peel (OP), pineapple peel (PP), sugarcane bagasse (SB) and sawdust (SW), was performed infrared spectroscopy and thermogravimetric analysis. The classification of chemical and thermal behavior was based on principal components analysis (PCA) by similarity to four reference materials, cotton fiber (CF), lignin (LG), citrus pectin (CP) and potato starch (PS). The results indicate a clear trend of recalcitrance in four well-defined groups (GPI–GPIV): GPII or lignin-like biomasses (LG and AB) were assessed as the most recalcitrant biomass type (devolatilization temperature: ~ 150 °C, remaining weights > 30wt%), followed by GPI or cellulosic-like biomass (CF, SW and SB), which contain high amounts of cellulose that increase its recalcitrance to thermal degradation (devolatilization temperature: 200–380 °C, remaining weights < 20wt%). GPIII or pectin-like biomasses (CP, PP, OP, BP), known to be significant sources of pectin and hydrolyzable polysaccharides, were classified as intermediated recalcitrance biomasses (devolatilization temperature: 150–350 °C, remaining weights < 30%wt,), whereas GPIV or starchy-like biomasses (PS, BS and CB) were the least recalcitrant materials (devolatilization temperature: 250–350 °C, remaining weights < 30 wt%). This methodology could be applied to classify novel uncharacterized lignocellulosic biomasses irrespectively of their origin based on their similarity to reference materials and to preselect the processing route, to biofuels or biomaterials, in a fast and economical manner.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

LCB:

Lignocellulosic biomass

TGA:

Thermogravimetric analysis

FTIR:

Fourier transform infrared

IR:

Infrared

TG:

Thermogram

DTG:

Differential thermogram

PCA:

Principal component analysis

PCI:

Principal component one

PCII:

Principal component two

PCIII:

Principal component three

GPI:

Group one

GPII:

Group two

GPIII:

Group three

GPIV:

Group four

AB:

Agave bagasse

BP:

Banana peel

BS:

Barley straw

CP:

Citrus pectin

CB:

Corncob

CF:

Cotton fiber

LG:

Lignin

OP:

Orange peel

PS:

Potato starch

PP:

Pineapple peel

SB:

Sugarcane bagasse

SW:

Sawdust

References

  • Abidi N, Hequet E, Ethridge D (2007) Thermogravimetric analysis of cotton fibers: relationship with maturity and fineness. J Appl Polym Sci 103:3476–3482

    Article  CAS  Google Scholar 

  • Abidi N, Cabrales L, Hequet E (2010a) Thermogravimetric analysis of developing cotton fibers. Thermochim Acta 498:27–32

    Article  CAS  Google Scholar 

  • Abidi N, Cabrales L, Hequet E (2010b) Fourier transform infrared spectroscopic approach to the study of the secondary cell wall development in cotton fiber. Cellulose 17:309–320

    Article  CAS  Google Scholar 

  • Abidi N, Cabrales L, Haigler CH (2014) Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy. Carbohydr Polym 100:9–16

    Article  CAS  Google Scholar 

  • Aburto J, Moran M, Galano A, Torres-García E (2015) Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J Anal Appl Pyrolysis 112:94–104

    Article  CAS  Google Scholar 

  • Al-Battashi HS, Annamalai N, Sivakumar N et al (2019) Lignocellulosic biomass (LCB): a potential alternative biorefinery feedstock for polyhydroxyalkanoates production. Rev Environ Sci Biotechnol 18:183–205

    Article  CAS  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Rad Res Appl Sci 7(2):163–173

    CAS  Google Scholar 

  • Ballice L, Sert M, Saglam M, Yüksel M (2020) Determination of pyrolysis kinetics of cellulose and lignin fractions isolated from selected Turkish biomasses. Arab J Sci Eng 45(9):7429–7444

    Article  CAS  Google Scholar 

  • Bar-On YM, Phillips R, Milo R (2018) The biomass distribution on Earth. Proc Natl Acad Sci 115(25):6506–6511

    Article  CAS  Google Scholar 

  • Beig, B., Riaz, M., Naqvi, S. R., Hassan, M., Zheng, Z., Karimi, K., ... & Chi, N. T. L. (2020). Current challenges and innovative developments in pre-treatment of lignocellulosic residues for biofuel production: A Review. Fuel, 119670.

  • Boonchuay P, Techapun C, Leksawasdi N, Seesuriyachan P, Hanmoungjai P, Watanabe M, Chaiyaso T (2018) An integrated process for xylooligosaccharide and bioethanol production from corncob. Biores Technol 256:399–407

    Article  CAS  Google Scholar 

  • Brebu M, Tamminen T, Spiridon I (2013) Thermal degradation of various lignins by TG-MS/FTIR and Py-GC-MS. J Anal Appl Pyrolysis 104:531–539

    Article  CAS  Google Scholar 

  • Brillard A, Habermacher D, Brilhac JF (2017) Thermal degradations of used cotton fabrics and of cellulose: kinetic and heat transfer modeling. Cellulose 24:1579–1595

    Article  CAS  Google Scholar 

  • Cabrales L, Abidi N (2010) On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim 102:485–491

    Article  CAS  Google Scholar 

  • Candido RG, Gonçalves AR (2019) Evaluation of two different applications for cellulose isolated from sugarcane bagasse in a biorefinery concept. Ind Crops Prod 142:111616

    Article  CAS  Google Scholar 

  • Carrier M, Loppinet-Serani A, Denux D et al (2011) Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenerg 35:298–307

    Article  CAS  Google Scholar 

  • Carrillo-Nieves D, Alanís MJR, de la Cruz Quiroz R, Ruiz HA, Iqbal HM, Parra-Saldívar R (2019) Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewa Sustain Energy Rev 102:63–74

  • Chung C, Lee M, Choe EK (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr Polym 58:417–420

    Article  CAS  Google Scholar 

  • De la Torre I, Martin-Dominguez VICTOR, Acedos MG, Esteban J, Santos VE, Ladero MIGUEL (2019). Utilisation/upgrading of orange peel waste from a biological biorefinery perspective. Appl Microbiol Biotechnol 103(15):5975–5991

  • De Palma KR, García-Hernando N, Silva MA et al (2019) Pyrolysis and combustion kinetic study and complementary study of ash fusibility behavior of sugarcane bagasse, sugarcane straw, and their pellets: case study of agro-industrial residues. Energy Fuels 33:3227–3238

    Article  Google Scholar 

  • Dhyani V, Bhaskar T (2018) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy 129:695–716

    Article  CAS  Google Scholar 

  • Einhorn-Stoll U, Kunzek H, Dongowski G (2007) Thermal analysis of chemically and mechanically modified pectins. Food Hydrocoll 21:1101–1112

    Article  CAS  Google Scholar 

  • Feng YH, Cheng TY, Yang WG, Ma PT, He HZ, Yin XC, Yu XX (2018) Characteristics and environmentally friendly extraction of cellulose nanofibrils from sugarcane bagasse. Ind Crops Prod 111:285–291

    Article  CAS  Google Scholar 

  • Fisher T, Hajaligol M, Waymack B, Kellogg D (2002) Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrolysis 62:331–349

    Article  CAS  Google Scholar 

  • García R, Pizarro C, Lavín AG, Bueno JL (2013) Biomass proximate analysis using thermogravimetry. Bioresour Technol 139:1–4

    Article  Google Scholar 

  • Gil MV, González-Vázquez MP, García R, Rubiera F, Pevida C (2019) Assessing the influence of biomass properties on the gasification process using multivariate data analysis. Energy Conv Manage 184:649–660

  • Giummarella N, Pu Y, Ragauskas AJ, Lawoko M (2013) A critical review on the analysis of lignin carbohydrate bonds. Green Chem 21:23

    Google Scholar 

  • He J, Yang Z, Xiong S, Guo M, Yan Y, Ran J, Zhang L (2020) Experimental and thermodynamic study of banana peel non-catalytic gasification characteristics. Waste Manage 113:369–378

    Article  CAS  Google Scholar 

  • Hersh SP, Carolina N, Mark HF (2006) Cotton Fiber Chemistry and Technology, 1st. edn. Taylor & Francis Group, LLC

  • Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Espinosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100(3):1238–1245

  • Huang Y, Wang L, Chao Y et al (2012) Analysis of lignin aromatic structure in wood based on the IR spectrum. J Wood Chem Technol 32:294–303

    Article  CAS  Google Scholar 

  • Ibarra-Díaz N, Castañón-Rodríguez JF, Gómez-Rodríguez J, Aguilar-Uscanga MG (2020) Optimization of peroxide-alkaline pretreatment and enzymatic hydrolysis of barley straw (Hordeum vulgare L.) to produce fermentable sugars using a Box–Behnken design. Biomass Conv Bioref 1–10

  • Karimi K, Taherzadeh MJ (2016) A critical review of analytical methods in pre-treatment of lignocelluloses: Composition, imaging, and crystallinity. Bioresour Technol 200:1008–1018

    Article  CAS  Google Scholar 

  • Kawamoto H (2017) Lignin pyrolysis reactions. J Wood Sci 63:117–132

    Article  CAS  Google Scholar 

  • Khoo RZ, Chow WS, Ismail H (2018) Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose 25(8):4303–4330

    Article  CAS  Google Scholar 

  • Lazzari E, Schena T, Marcelo MCA, Primaz CT, Silva AN, Ferrão MF, Caramão EB (2018) Classification of biomass through their pyrolytic bio-oil composition using FTIR and PCA analysis. Ind Crops Prod 111:856–864

    Article  CAS  Google Scholar 

  • Lemos PVF, Barbosa LS, Ramos IG, Coelho RE, Druzian JI (2019) Characterization of amylose and amylopectin fractions separated from potato, banana, corn, and cassava starches. Int J Biol Macromol 132:32–42

    Article  CAS  Google Scholar 

  • Liang J, Chen J, Wu S et al (2018) Comprehensive insights into cellulose structure evolution: via multi-perspective analysis during a slow pyrolysis process. Sustain Energy Fuels 2:1855–1862

    Article  CAS  Google Scholar 

  • Lin YC, Cho J, Tompsett GA et al (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107

    Article  CAS  Google Scholar 

  • Liu X, Yu L, Xie F et al (2010) Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch/Staerke 62:139–146

    Article  CAS  Google Scholar 

  • Liu Y, He Z, Shankle M, Tewolde H (2016) Compositional features of cotton plant biomass fractions characterized by attenuated total reflection Fourier transform infrared spectroscopy. Ind Crops Prod 79:283–286

    Article  CAS  Google Scholar 

  • Lupoi JS, Singh S, Simmons BA, Henry RJ (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res 7:1–23

    Article  CAS  Google Scholar 

  • Mainka H, Täger O, Körner E, Hilfert L, Busse S, Edelmann FT, Herrmann AS (2015) Lignin–an alternative precursor for sustainable and cost-effective automotive carbon fiber. J Market Res 4(3):283–296

    CAS  Google Scholar 

  • Melati RB, Shimizu FL, Oliveira G, Pagnocca FC, de Souza W, Sant’Anna C, Brienzo M (2019) Key factors affecting the recalcitrance and conversion process of biomass. BioEnergy Res 12(1):1–20

    Article  CAS  Google Scholar 

  • Mishra RK, Mohanty K (2018a) Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresour Technol 251:63–74

    Article  CAS  Google Scholar 

  • Mishra RK, Mohanty K (2018b) Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Conv Bioref 8(4):799–812

    Article  CAS  Google Scholar 

  • Munir S, Daood SS, Nimmo W et al (2009) Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour Technol 100:1413–1418

    Article  CAS  Google Scholar 

  • Olatunji, O. O., Akinlabi, S. A., Mashinini, M. P., Fatoba, S. O., & Ajayi, O. O. (2018). Thermo-gravimetric characterization of biomass properties: a review. In IOP Conf. Ser. Mater. Sci. Eng (Vol. 423, No. 1, p. 012175).

  • Ortiz-Sanchez M, Solarte-Toro JC, Orrego-Alzate CE, Acosta-Medina CD, Cardona-Alzate CA (2020) Integral use of orange peel waste through the biorefinery concept: an experimental, technical, energy, and economic assessment. Biom Conv Biorefin 11(2):645–659

    Article  Google Scholar 

  • Osorio J, Chejne F (2019) Bio-oil production in fluidized bed reactor at pilot plant from sugarcane bagasse by catalytic fast pyrolysis. Waste Biomass Valor 10:187–195

    Article  CAS  Google Scholar 

  • Ouyang S, Qiao H, Xu Q et al (2019) Development of two-step pre-treatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production. Cellulose 26:8513–8524

    Article  CAS  Google Scholar 

  • Ozbay N, Yargic AS, Sahin RZY, Yaman E (2019) Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Ren Energy 140:633–646

    Article  CAS  Google Scholar 

  • Park CW, Youe WJ, Namgung HW, Han SY, Seo PN, Chae HM, Lee SH (2018) Effect of lignocellulose nanofibril and polymeric methylene diphenyl diisocyanate addition on plasticized lignin/polycaprolactone composites. BioResources 13(3):6802–6817

  • Paschos T, Louloudi A, Papayannakos N, Kekos D, Mamma D (2020) Potential of barley straw for high titer bioethanol production applying pre-hydrolysis and simultaneous saccharification and fermentation at high solid loading. Biofuels 1–7

  • Pereira SC, Maehara L, Machado CMM, Farinas CS (2016) Physical-chemical-morphological characterization of the whole sugarcane lignocellulosic biomass used for 2G ethanol production by spectroscopy and microscopy techniques. Renew Energy 87:607–617

    Article  CAS  Google Scholar 

  • Prakash H, Chauhan PS, General T, Sharma AK (2018) Development of eco-friendly process for the production of bioethanol from banana peel using inhouse developed cocktail of thermo-alkali-stable depolymerizing enzymes. Bioprocess Biosyst Eng 41(7):1003–1016

    Article  CAS  Google Scholar 

  • Raheem A, Zhao M, Dastyar W, Channa AQ, Ji G, Zhang Y (2019) Parametric gasification process of sugarcane bagasse for syngas production. Int J Hydrogen Energy 44(31):16234–16247

    Article  CAS  Google Scholar 

  • Rajendran NS, Thampi H (2019) Extraction and characterisation of pectin from banana peel. Carpathian J Food Sci Technol 11(4)

  • Ramezani N, Sain M (2018) Thermal and physiochemical characterization of lignin extracted from wheat straw by organosolv process. J Polym Environ 26(7):3109–3116

    Article  CAS  Google Scholar 

  • Rios M, Kaltschmitt M (2013) Bioenergy potential in Mexico—status and perspectives on a high spatial distribution. Biomass Conv Bioref 3(3):239–254

  • Rodier L, Bilba K, Onésippe C, Arsène MA (2019) Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Ind Crops Prod 141:111731

    Article  CAS  Google Scholar 

  • Rudnik E, Matuschek G, Milanov N, Kettrup A (2006) Thermal stability and degradation of starch derivatives. J Therm Anal Calorim 85:267–270

    Article  CAS  Google Scholar 

  • Santoni I, Callone E, Sandak A et al (2015) Solid state NMR and IR characterization of wood polymer structure in relation to tree provenance. Carbohydr Polym 117:710–721

    Article  CAS  Google Scholar 

  • Sewsynker-Sukai Y, Kana EG (2018) Simultaneous saccharification and bioethanol production from corn cobs: Process optimization and kinetic studies. Biores Technol 262:32–41

    Article  CAS  Google Scholar 

  • Shah MA, Khan MNS, Kumar V (2018) Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim 134(3):2137–2145

    Article  CAS  Google Scholar 

  • Tovar AK, Godínez LA, Espejel F, Ramírez-Zamora RM, Robles I (2019) Optimization of the integral valorization process for orange peel waste using a design of experiments approach: Production of high-quality pectin and activated carbon. Waste Manage 85:202–213

    Article  CAS  Google Scholar 

  • Treedet W, Suntivarakorn R (2018) Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process Technol 179:17–31

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Acevedo-Benítez JA, Hernández-Santiago C (2010) Distribution and potential of bioenergy resources from agricultural activities in Mexico. Ren Sustain Energy Rev 14:2147–2153

    Article  CAS  Google Scholar 

  • Wang Y, He T, Liu K, Wu J, Fang Y (2012) From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis. Biores Technol 108:280–284

    Article  CAS  Google Scholar 

  • Xin S, Yang H, Chen Y et al (2015) Chemical structure evolution of char during the pyrolysis of cellulose. J Anal Appl Pyrolysis 116:263–271

    Article  CAS  Google Scholar 

  • Xu F, Yu J, Tesso T et al (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques : a mini review. Appl Energy 104:801–809

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H et al (2011) In-Depth Investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Ind Eng Chem Res 50:10424–10433

    Article  Google Scholar 

  • Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod Biorefin 6(4):465–482

    Article  CAS  Google Scholar 

  • Zhao S, Liu M, Zhao L, Zhu L (2018) Influence of interactions among three biomass components on the pyrolysis behavior. Ind Eng Chem Res 57:5241–5249

    Article  CAS  Google Scholar 

  • Zoghlami A, Paës G (2019) Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis. Front Chem 7:874

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Y. Mena-Cervantes.

Additional information

Editorial responsibility: Josef Trögl.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1710 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Estrada, A., Mena-Cervantes, V.Y., Mederos-Nieto, F.S. et al. Assessment and classification of lignocellulosic biomass recalcitrance by principal components analysis based on thermogravimetry and infrared spectroscopy. Int. J. Environ. Sci. Technol. 19, 2529–2544 (2022). https://doi.org/10.1007/s13762-021-03309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03309-y

Keywords

Navigation