Skip to main content
Log in

Ethylenediurea regulates growth and physiochemical responses of Pisum sativum to ambient O3

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Tropospheric ozone (O3) is a widespread secondary photochemical air pollutant, which occurs naturally at ground level in low concentration and is regarded the most damaging air toxicant. Current study was conducted to evaluate the potential of ethylenediurea (EDU) on the growth and physiochemical attributes of pea cultivar exposed to ambient O3 stress. Ozone stress reduced growth and biomass production of Pisum sativum. Application of EDU concentration of 450 ppm via soil drenching significantly enhanced growth and biomass of P. sativum. Application of EDU escalated relative water content and ascorbic acid content in P. sativum seedlings ultimately showing a significant increment in air pollution tolerance index up to 38.6% with EDU-450 treatment making the seedling more tolerant to the air pollution. The increasing concentrations of EDU showed significant increase in total soluble sugar, protein and proline contents, while phenolic contents were significantly decreased up to 36.6% with 450 ppm treatment of EDU. Furthermore, EDU treatment enhanced the activity of superoxide dismutase and ascorbate peroxidase. Current research reveals that EDU ameliorates the deleterious O3 effects on P. sativum and it can be used as an effective tool to enhance crop productivity at elevated levels of O3 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agathokleous E (2017) Perspectives for elucidating the ethylenediurea (EDU) mode of action for protection against O3 phytotoxicity. Ecotoxicol Environ Saf 142:530–537

    Article  CAS  Google Scholar 

  • Agathokleous E, Koike T, Watanabe M, Hoshika Y, Saitanis CJ (2015) Ethylenediurea (EDU), an effective phytoproctectant against O3 deleterious effects and a valuable research tool. J Agric Meteorol 71:185–195

    Article  Google Scholar 

  • Agathokleous E, Paoletti E, Saitanis CJ, Manning W, Sugai T, Koike T (2016a) Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensisprotection against O3-induced injury. Sci Total Environ 573:1053–1062

    Article  CAS  Google Scholar 

  • Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Shi C, Koike T (2016b) High doses of ethylene diurea (EDU) are not toxic to willow and act as nitrogen fertilizer. Sci Total Environ 566:841–850

    Article  CAS  Google Scholar 

  • Agathokleous E, Saitanis CJ, Stamatelopoulos D, Mouzaki-Paxinou AC, Paoletti E, Manning W (2016c) Olive oil for dressing plant leaves so as to avoid O3 injury. Water Air Soil Pollut 227:282

    Article  CAS  Google Scholar 

  • Ali I, Rub A, Hussain SA (2002) Screening of pea germplasm for growth, yield and resistance against powdery mildew under the agro-climatic conditions of Peshawar. Sarhad J Agric 18:177–181

    Google Scholar 

  • Alinian S, Razmjoo J, Zeinali H (2016) Flavonoids, anthocynins, phenolics and essential oil produced in cumin (Cuminum cyminum L.) accessions under different irrigation regimes. Ind Crop Prod 81:49–55

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Ashrafuzzaman MD, Lubna FA, Holtkamp F, Manning WJ, Kraska T, Frei M (2017) Diagnosing ozone stress and differential tolerance in rice (Oryza sativa L.) with ethylenediurea (EDU). Environ Pollut 230:339–350

    Article  CAS  Google Scholar 

  • Baqasi LA, Qari HA, Hassan IA (2018) Physiological and biochemical response of winter wheat (Triticum aestivum L.) to ambient O3 and the antiozonant chemical ethylenediurea (EDU) in Jeddah, Saudi Arabia. Biomed Pharmacol J 11:45–51

    Article  CAS  Google Scholar 

  • Bates LS, Waldran RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–208

    Article  CAS  Google Scholar 

  • Carnahan JE, Jenner EL, Wat EKW (1978) Prevention of ozone injury to plants by a new protective chemical. Phytopath 68:1225–1229

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2015) The role of elevated ozone on growth, yield and seed quality amongst six cultivars of mung bean. Ecotoxicol Environ Saf 111:286–294

    Article  CAS  Google Scholar 

  • Chaudhary IJ, Rathore D (2018) Suspended particulate matter deposition and its impact on urban trees. Atmos Pollut Res 9:1072–1082

    Article  CAS  Google Scholar 

  • Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plantarum 157:69–84

    Article  CAS  Google Scholar 

  • Coyle M, Smith R, Fowler D (2003) An ozone budget for the UK: using measurements from the national ozone monitoring network; measured and modelled meteorological data, and a ‘big-leaf’ resistance analogy model of dry deposition. Environ Pollut 123:115–123

    Article  CAS  Google Scholar 

  • Didyk NP, Blum OB (2011) Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiol Plant 33:25–34

    Article  CAS  Google Scholar 

  • Dumont J, Keskisaari S, Keinänen M (2017) Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes. Tree Physiol 34:253–266

    Article  CAS  Google Scholar 

  • Emberson LD, Büker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh NTK, Quadir QF, Wahid A (2009) A comparison of North American and Asian exposure-response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  • Feng Z, Wang S, Szantoi Z, Chen S, Wang X (2010) Protection of plants from ambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environ Pollut 158:3236–3242

    Article  CAS  Google Scholar 

  • Guidi L, Di Cagno R, Soldatini GF (2000) Screening of bean cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence. Environ Pollut 107:349–355

    Article  CAS  Google Scholar 

  • Gupta SK, Sharma M, Majumder B, Maurya VK, Lohani M, Deeba F, Pandey V (2018) Impact of ethylenediurea (EDU) on growth, yield and proteome of two winter wheat varieties under high ambient ozone phytotxicity. Chemosphere 196:161–173

    Article  CAS  Google Scholar 

  • Hassan IA, Bell JNB, Marshall FM (2007) Effects of air filtration on Egyptian clover (Trifoliumalexandrium L. cv. Messkawy) grown in open top chambers in a rural site in Egypt. Res J Biol Sci 2:395–402

    Google Scholar 

  • Jiang L, Feng Z, Dai L, Shang B, Paoletti E (2018) Large variability in ambient ozone sensitivity across 19 ethylenediurea-treated Chinese cultivars of soybean is driven by total ascorbate. J Environ Sci 64:10–22

    Article  Google Scholar 

  • Keller T, Schwager H (1977) Air pollution and ascorbic acid. Eur J Pathol 7:338–350

    Article  CAS  Google Scholar 

  • Kirk JTO, Allen RL (1965) Dependence of chloroplast pigments synthesis on protein synthetic effects on actilione. Biochem Biophysics Res J Canada 27:523–530

    Article  Google Scholar 

  • Li S, Harley PC, Niinemets Ü (2017) Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris. Plant, Cell Environ 40:1984–2003

    Article  CAS  Google Scholar 

  • Lowery OH, Rosenbrough MS, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–267

    Article  Google Scholar 

  • Manning WJ, Paoletti E, Sandermann JH, Ernst D (2011) Ethylenediurea (EDU): a research tool for assessment and verification of the effects of ground level ozone on plants under natural conditions. Environ Pollut 159:3283–3293

    Article  CAS  Google Scholar 

  • McGrath JM (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. Proc Natl Acad Sci USA. 112:14390–14395

    Article  CAS  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797–811

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplast; its inactivation in ascorbate depleted medium and reactivation by monodehydro ascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Navakoudis E, Lütz C, Langebartels C (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Bio Chim Biophys Acta 1621:160–169

    Article  CAS  Google Scholar 

  • Nawab NN, Subhani GM, Mahmood K, Shakil Q, Saeed A (2008) Genetic variability, correlation and path analysis studies in garden pea (Pisumsativum L.). J Agric Res 46:333–340

    Google Scholar 

  • Nelson N (1944) A photometric adaptation of the Somogyi method for the determination of sugar. J Biol Chem 153:375

    Article  CAS  Google Scholar 

  • Oksanen E, Pandey V, Pandey AK, Keski-Saari S, Kontunen-Soppela S, Sharma C (2013) Impacts of increasing ozone on Indian plants. Environ Pollut 177:189–200

    Article  CAS  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E (2014) Differences in responses of two mustard cultivars to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    Article  CAS  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Mishra A, Sahu N, Pandey V, Oksanen E (2015) Searching for common responsive parameters for ozone tolerance in 18 rice cultivars in India: results from ethylenediurea studies. Sci Total Environ 1:230–238

    Article  CAS  Google Scholar 

  • Paoletti E, Manning WJ, Ferrara AM, Tagliaferro F (2011) Soil drench of ethylenediurea (EDU) protects sensitive trees from ozone injury. iForest Biogeosci For 4:66–68

    Article  Google Scholar 

  • Rai R, Agrawal M, Kumar Choudhary K, Agrawal SB, Emberson L, Büker P (2015) Application of ethylene diurea (EDU) in assessing the response of a tropical soybean cultivar to ambient O3: nitrogen metabolism, antioxidants, reproductive development and yield. Ecotoxicol Environ Saf 112:29–38

    Article  CAS  Google Scholar 

  • Rao CASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stresses in plants. Springer, Berlin, pp 111–114

    Chapter  Google Scholar 

  • Rathore D, Chaudhary IJ (2019) Ozone risk assessment of castor (Ricinus communis L.) cultivars using open top chamber and ethylenediurea (EDU). Environ Pollut 244:257–269

    Article  CAS  Google Scholar 

  • Raza SN, Vijaykumari N, Murthy MS (1985) Air pollution tolerance index of certain plants of hyderabad. In: Symposium on biomonitoring state of environment. Indian National Science Academy, New Delhi, pp 243–245

  • Reiling K, Davison AW (1992) Spatial variation in ozone resistance of British populations of Plantago major L. New Phytol 122:699–708

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameters. Environ Exp Bot 69:328–337

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2011) Cultivar-specific response of soybean (Glycine max L.) to ambient and elevated concentration of ozone under open top chambers. Water Air Soil Pollut 217:283–302

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB (2017) Tropospheric ozone pollution in India: effects on crop yield and product quality. Environ Sci Pollut Res 24:4367–4382

    Article  CAS  Google Scholar 

  • Singh SK, Rao DN (1983) Evaluation of the plants for their tolerance to air pollution. In: Proceedings of the symposium on air pollution control held at IIT, Delhi, pp 218–224

  • Singh S, Agrawal SB, Agrawal M (2009) Differential protection of ethylenediurea (EDU) against ambient ozone for five cultivars of tropical wheat. Environ Pollut 157:2359–2367

    Article  CAS  Google Scholar 

  • Singh AA, Singh S, Agrawal M, Agrawal SB (2015) Assessment of ethylene diurea-induced protection in plants against ozone phytotoxicity. Rev Environ Contam Toxicol 233:124–189

    Google Scholar 

  • Singh AA, Chaurasia M, Gupta V, Agrawal M, Agrawal SB (2018a) Responses of Zea mays L. cultivars ‘Buland’ and ‘Prakash’ to an antiozonant ethylene diurea grown under ambient and elevated levels of ozone. Acta Physiol Plant 40:92

    Article  CAS  Google Scholar 

  • Singh S, Singh P, Agrawal SB, Agrawal M (2018b) Use of Ethylenediurea (EDU) in identifying indicator cultivars of Indian clover against ambient ozone. Ecotoxicol Environ Saf 147:1046–1055

    Article  CAS  Google Scholar 

  • Sivakumaran S, Hall MA (1978) Effect of age and water stress in endogenous levels of plants growth regulators in Euphorbia lathyrus. J Exp Bot 29:195–205

    Article  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multifaceted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  Google Scholar 

  • Smykal P, Aubert G, Burstin J, Coyne CJ, Ellis NTH, Flavell AJ, Ford R, Hybl M, Macas J, Neumann P, McPhee KE, Redden RJ, Rubiales D, Weller JL, Warkentin TD (2012) Pea (Pisumsativum L.) in the genomic era. Agronomy 2:74–115

    Article  Google Scholar 

  • Szantoi Z, Chappelka AH, Muntifering RB, Somers GL (2009) Cutleaf coneflower (Rudbeckia laciniata L.) response to ozone and ethylenediurea (EDU). Environ Pollut 157:840–846

    Article  CAS  Google Scholar 

  • Tiwari S (2017) Ethylenediurea as a potential tool in evaluating ozone phytotoxicity: a review study on physiological, biochemical and morphological responses of plants. Environ Sci Pollut Res 24:14019–14039

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2010) Effectiveness of different EDU concentrations in ameliorating ozone stress in carrot plants. Ecotoxicol Environ Saf 73:1018–1027

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M, Manning WJ (2005) Assessing the effects of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of application of ethylene diurea (EDU). Environ Pollut 138:153–160

    Article  CAS  Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 4:604–618

    Article  CAS  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    Article  CAS  Google Scholar 

  • Wahid A, Ahmad SS, Zhao Y, Bell JNB (2012) Evaluation of ambient air pollution effects on three cultivars of sesame (Sesamum indicum L.) by using ethylenediurea. Pak J Bot 44:99–110

    CAS  Google Scholar 

  • Yuan X, Calatayud V, Jiang L, Manning WJ, Hayes F, Tian Y, Feng Z (2015) Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU). Environ Pollut 205:199–208

    Article  CAS  Google Scholar 

  • Zhang L, Xiao S, Chen YJ (2017) Ozone sensitivity of four Pakchoi cultivars with different leaf colors: physiological and biochemical mechanisms. Photosynthetica 55:478–490

    Article  CAS  Google Scholar 

  • Zhang L, Jia LL, Sui JX (2018) Ameliorating effects of three kinds of antioxidants to ozone-polluted painted nettle (Coleus blumei, benth.). Photosynthetica 56:623–632

    Article  CAS  Google Scholar 

  • Zieslin N, Ben-Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flower. Plant Physiol Biochem 31:333–339

    CAS  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Prof. Dr. Firdaus-e-Bareen, chairperson Department of Botany, University of the Punjab, Lahore, for providing necessary laboratory facilities in Applied Environmental Biology and Biotechnology Research Lab and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Jabeen.

Additional information

Editorial responsibility: Anna Grobelak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, F., Ahmed, S. Ethylenediurea regulates growth and physiochemical responses of Pisum sativum to ambient O3. Int. J. Environ. Sci. Technol. 18, 3571–3580 (2021). https://doi.org/10.1007/s13762-020-03077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-03077-1

Keywords

Navigation