Skip to main content
Log in

Synthesis of polyamino styrene from post-consumption expanded polystyrene and analysis of its CO2 scavenger capacity

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this research, a sample of expanded polystyrene (EPS) was isolated from a whole solid waste amount as raw material, the synthesis of polyamino styrene (PSNH2) was done in a two-step process. Initially, it was carried out the nitration of PS to obtain polynitro styrene (PSNO2) in 10.18% of nitration’s efficiency. Afterward, the PSNO2 was reduced under HCl/Sn conditions in order to obtain the PSNH2 in 50% of yield taking into account the reduction of NO2 groups from PSNO2. The raw material, intermediary and the final product were completely characterized by chemical analytical techniques. With the new material in hands, it was used as a solid support in the CO2 capture process, showing an adsorption capacity of 1.05 mmol g−1 of PSNH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

°C:

Celsius degree

1H-NMR:

Proton nuclear magnetic resonance

Ar:

Aromatic

As:

Asymmetric

BET:

Brunauer–Emmett–Teller

C:

Carbon

C :

Thickness of adsorbed layer

CH4 :

Methane

cm3 :

Cubic centimeter

CW:

Carbonated water

DCE:

Dichloroethane

DMCHA:

N,N′-Dimethyl cyclohexylamine

DMF:

N,N′-Dimethylformamide

EPS:

Expanded polystyrene

FTIR:

Fourier transformed infrared

g:

Gram

GHG:

Greenhouse gases

GtCO2 :

Gigatons of carbon dioxide

h:

Hour

H:

Hydrogen

H2CO3 :

Carbonic acid

H2O:

Water

H2SO4 :

Sulfuric acid

HCl:

Hydrochloric acid

HCO3 :

Bicarbonate

HNO3 :

Nitric acid

K:

Langmuir constant

K 1 :

Pseudo-first-order constant

K 2 :

Pseudo-second-order constant

K f :

Freundlich constant

KOH:

Potassium hydroxide

LCAS:

Low-cost adsorbent solids

mL:

Milliliter

mmHg:

Millimeters of mercury

mmol g 1 :

Millimole per gram

MOF:

Metal–organic frameworks

MtCO2 :

Megatons of carbon dioxide

N2 :

Nitrogen

NH2 :

Amino groups

NH3 :

Ammonia

NO2 :

Nitro groups

O:

Oxygen

P:

Pressure

Pa:

Pascal

ppm:

Parts per million

PVC:

Poly vinyl chloride

q e :

Adsorption capacity in equilibrium

q t :

Adsorption capacity in any time

R 2 :

Correlation coefficient

SEM–EDS:

Scanning electron microscopy with energy dispersion spectrometry

SHS:

Switchable hydrophilicity solvent

Sn:

Tin

Sym:

Symmetric

t:

Time

TGA:

Thermogravimetric analysis

VPS:

Virgin polystyrene

wt:

Weight

α :

Rate of initial adsorption

β :

Superficial extension that is covered and the activation energy of the process

µm:

Micrometer

References

  • AIST (1999) N,N′-dimethylcyclohexylamine. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi. Accessed 21 Feb 2019

  • Ara R, Sohag K, Mastura S, Abdullah S, Jaafar M (2015) CO2 emissions, energy consumption, economic and population growth in Malaysia. Renew Sustain Energy Rev 41:594–601

    Article  Google Scholar 

  • Bae JY (2017) CO2 Capture by amine-functionalized mesoporous hollow silica. J Nanosci Nanotechnol 17(10):7418–7422

    Article  CAS  Google Scholar 

  • Bahri S, Venezia AM, Upadhyayula S (2019) Utilization of greenhouse gas carbon dioxide for cleaner Fischer–Tropsch diesel production. J Clean Prod 228:1013–1024

    Article  CAS  Google Scholar 

  • Billemont P, Coasne B, De Weireld G (2013) Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: effect of surface chemistry, water content, and pore disorder. Langmuir 29(10):3328–3338

    Article  CAS  Google Scholar 

  • Boonpoke A, Chiarakorn S, Laosiripojana N, Towprayoon S, Chidthaisong A (2012) Investigation of CO2 adsorption by bagasse-based activated carbon. Korean J ChemEng 29(1):89–94

    Article  CAS  Google Scholar 

  • Chan WH, Mazlee MN, Ahmad ZA, Ishak MAM, Shamsul JB (2017) The development of low cost adsorbents from clay and waste materials: a review. J Mater Cycles Waste Manag 19(1):1–14

    Article  CAS  Google Scholar 

  • Chisalita DA, Petrescu L, Cobden P, Eric van Dijk HAJ, Cormos AM, Cormos CC (2019) Assessing the environmental impact of an integrated steel mill with post-combustion CO2 capture and storage using the LCA methodology. J Clean Prod 211:1015–1025

    Article  CAS  Google Scholar 

  • Chowdhury SI, Ali R, Hasan T (2015) Synthesis of well-defined vinyl end-functional polystyrene using multifunctional initiator by atom transfer radical polymerization. Am J ApplSci 12(8):581–587

    Article  CAS  Google Scholar 

  • Dardouri M, Ammari F, Amor AB, Meganem F (2018) Adsorption of cadmium (II), zinc (II) and iron (III) from water by new cross- linked reusable polystyrene adsorbents. Mater ChemPhys 216:435–445

    CAS  Google Scholar 

  • Dendup T, Feng X, Clingan S, Astell-Burt T (2018) Environmental risk factors for developing type 2 diabetes mellitus: a systematic review. Int J Environ Res Public Health 15(1):78–103

    Article  Google Scholar 

  • EPA (2017) Greenhouse gas emissions. Retrieved from https://www.epa.gov/ghgemissions/overview-greenhouse-gases. Accessed 4 Mar 2019

  • Eskander SB, Tawfik ME (2011) Polymer-cement composite based on recycled expanded polystyrene foam waste. Polym Compos 32:1430–1438

    Article  CAS  Google Scholar 

  • Fernandez de la Ossa MA, Torre M, García-Ruiz C (2012) Nitrocellulose in propellants: characteristics and thermal properties. Adv Mater Sci Res 7:201–220

    Google Scholar 

  • Fu Z, Jia J, Li J, Liu C (2017) Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. ChemEng J 323:557–564

    CAS  Google Scholar 

  • Fu Z, Mohamed IMA, Li J, Liu C (2019) Novel adsorbents derived from recycled waste polystyrene via cross-linking reaction for enhanced adsorption capacity and separation selectivity of CO2. J Taiwan Inst Chem Eng 97:381–388

    Article  CAS  Google Scholar 

  • Gao H, Li Q, Ren S (2019) Progress on CO2 capture by porous organic polymers. CurrOpin Green Sustain Chem 16:33–38

    Google Scholar 

  • Ge C, Song J, Qin Z, Wang J, Fan W (2016) Polyurethane foam-based ultramicroporous carbons for CO2 capture. ACS Appl Mater Interfaces 8(29):18849–18859

    Article  CAS  Google Scholar 

  • Gray ML, Soong Y, Champagne KJ, Baltrus J, Stevens RW, Toochinda P, Chuang SSC (2004) CO2 capture by amine-enriched fly ash carbon sorbents. Sep PurifTechnol 35(1):31–36

    CAS  Google Scholar 

  • Hii KL, Yeap SP, Mashitah MD (2014) Utilization of palm pressed pericarp fiber: pretreatment, optimization and characterization. Environ Prog Sustain Energy 33(1):238–249

    Article  CAS  Google Scholar 

  • Ho BT, Roberts TK, Lucas S (2018) An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach. Crit Rev Biotechnol 38(2):308–320

    Article  CAS  Google Scholar 

  • International Energy Agency (2018) CO2 emissions from fuel combustion 2018 highlights. International Energy Agency. http://www.indiaenvironmentportal.org.in/files/file/CO2_Emissions_from_Fuel_Combustion_2018_Highlights.pdf. Accessed 2 Feb 2019

  • Jessop PG (2015) Switchable solvents as media for synthesis and separations. AldrichimActa 48(1):18–21

    CAS  Google Scholar 

  • Jessop PG, Kozycz L, Rahami ZG, Schoenmakers D, Boyd AR, Wechsler D, Holland AM (2011) Tertiary amine solvents having switchable hydrophilicity. Green Chem 13(3):619–623

    Article  CAS  Google Scholar 

  • Jo DH, Lee CH, Jung H, Jeon S, Hyun S (2015) Effect of amine surface density on CO2 adsorption behaviors of amine-functionalized polystyrene. Bull ChemSocJpn 88:1317–1322

    CAS  Google Scholar 

  • Kan A, Demirboǧa R (2009) A new technique of processing for waste-expanded polystyrene foams as aggregates. J Mater Process Technol 209(6):2994–3000

    Article  CAS  Google Scholar 

  • Karimi B, Shokrinezhad B, Samadi S (2019) Mortality and hospitalizations due to cardiovascular and respiratory diseases associated with air pollution in Iran: a systematic review and meta-analysis. Atmos Environ 198:438–447

    Article  CAS  Google Scholar 

  • Khot KM, Heer PKKS, Biniwale RB, Gaikar VG (2014) Equilibrium adsorption studies of CO2, CH4, and N2 on amine functionalized polystyrene. Sep SciTechnol 49:2376–2388

    Article  CAS  Google Scholar 

  • Khreis H, Nieuwenhuijsen MJ (2017) Traffic-related air pollution and childhood asthma: recent advances and remaining gaps in the exposure assessment methods. Int J Environ Res Public Health 14(3):1–19

    Article  CAS  Google Scholar 

  • Kim S, Shi H, Lee JY (2016) CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int J Greenh Gas Control 45:181–188

    Article  CAS  Google Scholar 

  • Lan G, Zhang X, Zhang X, Li M, Li Y, Yang Q (2015) Yolk-shell nanospheres with soluble amino-polystyrene as a reservoir for Pd NPs. RSC Adv 5:35730–35736

    Article  CAS  Google Scholar 

  • LashakiJahandar M, Khiavi S, Sayari A (2019) Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. ChemSoc Rev 48:3320–3405

    Google Scholar 

  • Latifa M, Pestov AV, Mekhaev AV, Marchuk AA, Bosenko SN, Petrova YS, Neudachina LK (2019) Sulfoethylatedpolyaminostyrene—polymer ligand with high selective interaction with silver ions in multicomponent solutions. J Environ ChemEng 7(1):1–9

    Google Scholar 

  • Li H, Li Q, Hao J, Xu Z, Sun D (2016) Preparation of CO2-responsive emulsions with switchable hydrophobic tertiary amine. Colloids Surf A PhysicochemEng Asp 502:107–113

    Article  CAS  Google Scholar 

  • Li X, Wang X, Ye G, Xia W, Wang X (2010) Polystyrene-based diazonium salt as adhesive: a new approach for enzyme immobilization on polymeric supports. Polymer 51(4):860–867

    Article  CAS  Google Scholar 

  • Lian X, Xu L, Chen M, Wu C, Li W, Huang B, Cui Y (2019) Carbon dioxide captured by metal organic frameworks and its subsequent resource utilization strategy: a review and prospect. J NanosciNanotechnol 19(6):3059–3078

    CAS  Google Scholar 

  • Lin KYA, Park AHA (2011) Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials. Environ SciTechnol 45(15):6633–6639

    Article  CAS  Google Scholar 

  • Lisbona P, Valverde JM, Romeo LM, Perejón A, Martínez A, Lara Y (2015) The Calcium-Looping technology for CO2 capture: on the important roles of energy integration and sorbent behavior. Appl Energy 162:787–807

    Google Scholar 

  • Liu SH, Huang YY (2018) Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J Clean Prod 175:354–360

    Article  CAS  Google Scholar 

  • Liu Y, Ye Q, Shen M, Shi J, Chen J, Pan H, Shi Y (2011) Carbon dioxide capture by functionalized solid amine sorbents with carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions. Environ SciTechnol 45:5710–5716

    Article  CAS  Google Scholar 

  • Maroto-Valer MM, Lu Z, Zhang Y, Tang Z (2008) Sorbents for CO2 capture from high carbon fly ashes. Waste Manag 28:2320–2328

    Article  CAS  Google Scholar 

  • Mckay G, Poots VJP (1980) Kinetics and diffusion processes in colour removal from effluent using wood as an adsorbent. J Chem Tech Biotechnol 30:279–292

    Article  CAS  Google Scholar 

  • Mengersen K, Wang N, Tong S, Wang B, Kimlin M, Hu W, Fang L, Zhou M (2018) Lung cancer and particulate pollution: A critical review of spatial and temporal analysis evidence. Environ Res 164:585–596

    Article  CAS  Google Scholar 

  • Merchan-Arenas DR, Murcia-Patiño AF, Cortés-Castillo LE, Kouznetsov VV (2017) Sulfonation of expanded polystyrene post consumption, structural analysis and its application in chemical enhanced oil recovery. ChemEng Trans 57:631–636

    Google Scholar 

  • Modak A, Jana S (2019) Advancement in porous adsorbents for post-combustion CO2 capture. MicroporousMesoporous Mater 276:107–132

    Article  CAS  Google Scholar 

  • Nasri NS, Hamza UD, Ismail SN, Ahmed MM, Mohsin R (2014) Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J Clean Prod 71:148–157

    Article  CAS  Google Scholar 

  • Ormonde E, Yoneyama M, Xu X (2016) Plastics recycling, chemical economics handbook. IHS Chemical, USA

    Google Scholar 

  • Palacios N (2017) Air pollution and Parkinson’s disease—evidence and future directions. Rev Environ Health 32(4):1–11

    Article  CAS  Google Scholar 

  • Pham VT, Nguyen H-TT, Van TT, Nguyen DTC, Le HTN, Nguyen TT, Vo D-VN, Le THN, Nguyen DC (2019) Kinetics, isotherm, thermodynamics, and recyclability of exfoliated graphene-Decorated MnFe2O4nanocomposite towards congo red dye. J Chem 2019:1–16

    Google Scholar 

  • Privalova EI, Karjalainen E, Nurmi M, Mäki-arvela P, Eränen K (2013) Imidazolium-based poly (ionic liquid)s as new alternatives for CO2 capture. ChemSusChem 1–11.

  • Qiu H, Lv L, Pan B, Zhang Q, Zhang W, Zhang Q (2009) Critical review in adsorption kinetic models. J Zhejiang UnivSci A 10(5):716–724

    Article  CAS  Google Scholar 

  • Quarato M, De ML, Gatti MF, Caputi A, Mansi F, Lorusso P, Birtolo F, Vimercati L (2017) Air pollution and public health: a PRISMA-compliant systematic review. Atmosphere 8(10):182–193

    Article  CAS  Google Scholar 

  • Rashidi NA, Yusup S, Hameed BH (2013) Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. Energy 61:440–446

    Article  CAS  Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders & porous solids. Academic Press, USA

    Google Scholar 

  • Ruebner A, Statton GL, Consaga JP (2003) Polymeric cyclodextrin nitrate esters, US Patent  6,527,887 B1

  • Saha P, Johny E, Dangi A, Shinde S, Brake S, MaS E, Sohal SS, Naidu V, Sharma P (2018) Impact of maternal air pollution exposure on children’s lung health: an indian perspective. Toxics 6(4):68–85

    Article  CAS  Google Scholar 

  • Sakuragi M, Aoyagi N, Furusho Y, Endo T (2014) Reversible fixation and release of carbon dioxide with a binary system consisting of polyethylene glycol and polystyrene-bearing cyclic amidine pendant group. J PolymSci, Part A: PolymChem 52(14):2025–2031

    Article  CAS  Google Scholar 

  • Sangchoom W, Mokaya R (2015) Valorization of lignin waste: carbons from hydrothermal carbonization of renewable lignin as superior sorbents for CO2 and hydrogen storage. ACS Sustain ChemEng 3(7):1658–1667

    Article  CAS  Google Scholar 

  • Saunders CW, Taylor LT (2005) Determination of the degree of nitration of cellulose nitrates via GPC/FT-IR using an on-line flow cell. ApplSpectrosc 45(5):900–905

    Article  Google Scholar 

  • Schäfer P, Hopmann C, Facklam M, Hollerbach L, Kolb T, Schedl A, Schmidt H-W, Nosić F, Wilhelmus B (2020) Advances in Polymer Processing 2020. Springer Vieweg, Berlin, Heidelberg

    Google Scholar 

  • Serna-Guerrero R, Sayari A (2010) Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves. Chem Eng J 161(1–2):182–190.

  • Shakerian F, Kim KH, Szulejko JE, Park JW (2015) A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl Energy 148:10–22

    Article  CAS  Google Scholar 

  • Shin S, Hong S-M, Choi SW, Lee KB, Jang E (2017) Development of a cost-effective CO2 adsorbent from petroleum coke via KOH activation. Appl Surf Sci 429:62–71

    Google Scholar 

  • Shyaa AA (2012) Synthesis, Characterization and thermal study of polyimides derived from polystyrene. J Univ Anbar Pure Sci 6(1):1–8

    Google Scholar 

  • Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compunds, 7th edn. Wiley, New York

    Google Scholar 

  • Singh G, Kim IY, Lakhi KS, Srivastava P, Naidu R, Vinu A (2017) Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity. Carbon 116:448–455

    Article  CAS  Google Scholar 

  • Sneddon G, McGlynn JC, Neumann MS, Aydin HM, Yiu HHP, Ganin AY (2017) Aminated poly(vinyl chloride) solid state adsorbents with hydrophobic function for post-combustion CO2 capture. J Mater Chem A 5(23):11864–11872

    Article  CAS  Google Scholar 

  • Speight JG (2006) History and terminology. The chemistry and technology of petroleum. CRC Press, Boca Raton

    Chapter  Google Scholar 

  • Stone ML, Rae C, Stewart FF, Wilson AD (2013) Switchable polarity solvents as draw solutes for forward osmosis. Desalination 312:124–129

    Article  CAS  Google Scholar 

  • Ünveren EE, Monkul BÖ, Sarıoğlan Ş, Karademir N, Alper E (2017) Solid amine sorbents for CO2 capture by chemical adsorption: a review. Petroleum 3(1):37–50

    Article  Google Scholar 

  • Uttaravalli AN, Dinda S, Gidla BR (2020) Scientific and engineering aspects of potential applications of post-consumer (waste) expanded polystyrene: a review. Process Saf Environ 137:140–148

    Article  CAS  Google Scholar 

  • Wang P, Guo Y, Zhao C, Yan J, Lu P (2017) Biomass derived wood ash with amine modification for post-combustion CO2 capture. Appl Energy 201:34–44

    Article  CAS  Google Scholar 

  • Wang HB, Jessop PG, Liu G (2012) Support-free porous polyamine particles for CO2 capture. ACS Macro Lett 1(8):944–948

    Article  CAS  Google Scholar 

  • Wang J, Wang M, Ru S, Liu X (2019) High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea. China Sci Total Environ 651:1661–1669

    Article  CAS  Google Scholar 

  • Wang J, Wang M, Zhao B, Qiao W, Long D, Ling L (2013) Mesoporous carbon-supported solid amine sorbents for low—temperature carbon dioxide capture. IndEngChem Res 52:5437–5444

    CAS  Google Scholar 

  • Wang L, Zhang J, Tan Z, Jiang H, Xiong C (2015) Development of ionic liquids tethered to coconut shell activated carbon for biogas upgrading in a packed bed. Energy Technol 3(5):509–517

    Article  CAS  Google Scholar 

  • Wilson AD, Stewart FF (2014) Structure-function study of tertiary amines as switchable polarity solvents. RSC Adv 4(22):11039–11049

    Article  CAS  Google Scholar 

  • Xiong Z, Gu T, Wang X (2014) Self-assembled multilayer films of sulfonatedgraphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes. Langmuir 30(2):522–532

    Article  CAS  Google Scholar 

  • Yang H, Zhang Z (2019) Nanostructured membrane materials for CO2 capture: a critical review. J NanosciNanotechnol 19(6):3173–3179

    Google Scholar 

  • Yi Q, Lu B, Feng J, Wu Y, Li W (2012) Evaluation of newly designed polygeneration system with CO2 recycle. Energy Fuels 26:1459–1469

    Article  CAS  Google Scholar 

  • Yuan Y, You H, Ricardez-Sandoval L (2018) Recent advances on first-principles modeling for the design of materials in CO2 capture technologies. Chin J ChemEng 27(7):1554–1565

    Article  CAS  Google Scholar 

  • Zainab G, Iqbal N, Yu J, Ding B, Wang X, Babar AA (2018) Amine-impregnated porous nanofiber membranes for CO2 capture. Compos Commun 10:45–51

    Article  Google Scholar 

  • Zhang S, Chen C, Ahn WS (2019) Recent progress on CO2 capture using amine-functionalized silica. CurrOpin Green Sustain Chem 16:26–32

    Google Scholar 

  • Zhang W, Liu Z, Tang S, Li D, Jiang Q, Zhang T (2020) Transcriptional response provides insights into the effect of chronic polystyrene nanoplastic exposure on Daphnia pulex. Chemosphere 238:1–9

    Google Scholar 

  • Zhang J, Wang X, Qi G, Li B, Song Z, Jiang H, Zhang X, Qiao J (2016) A novel N-doped porous carbon microsphere composed of hollow carbon nanospheres. Carbon 96:864–870

    Article  CAS  Google Scholar 

Download references

Acknowledgments

DRMA and AFMP are grateful for the support given by COLCIENCIAS for the doctoral fellowship, and the high-level human talent scholarship (grant 771) in a national master’s degree of the Santander department, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Merchán-Arenas.

Additional information

Editorial responsibility: Gobinath Ravindran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merchán-Arenas, D.R., Murcia-Patiño, A.F. Synthesis of polyamino styrene from post-consumption expanded polystyrene and analysis of its CO2 scavenger capacity. Int. J. Environ. Sci. Technol. 18, 2519–2532 (2021). https://doi.org/10.1007/s13762-020-03009-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-03009-z

Keywords

Navigation