Skip to main content
Log in

A review of nano-based materials used as flocculants for water treatment

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In recent years, the development of nanoparticle materials for water treatment has received great attention. From an industrial technological view point, the application of nanomaterials in the twenty-first century for water treatment will be the focal point of advanced materials design, processing and progress. In this context, the potential utilisation of different types of flocculants to clean up contaminated water becomes important to address the tremendous increase of water pollution resulting from continued high-level global industrialisation. A number of researchers have investigated the effectiveness of various nanoflocculants for this purpose. Although these nanoflocculants have been reported to successfully treat contaminated water, their flocculation performances are different. To the best of our knowledge, there is no review article which summarises the application and performance of nanoflocculants in the treatment of water containing various types of contaminants. This review summarises the recent development of a wide range of nanoflocculants for the treatment of water polluted particularly by heavy metals, dyes and bacteria. The influence of physicochemical properties of nanoflocculants upon their performance and optimum flocculation conditions is discussed in detail. This review will provide a useful source of information for researchers working on the advancement of cost-effective and environmentally friendly nanoflocculants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ (2013) Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect 121(10):1161–1166

    CAS  Google Scholar 

  • Abdullah AM, Hamidah H, Alam MZ (2017) Research progress in bioflocculants from bacteria. Int Food Res J 24(Suppl):S402–S409

    CAS  Google Scholar 

  • ADB (2012) Asian Development Bank: water operational plan 2011–2020. Mandaluyong City, Philippines

  • Agunbiade MO, Pohl CH, Ashafa AOT (2016) A review of the application of bioflocculants in wastewater treatment. Pol J Environ Stud 25(4):1381–1389

    CAS  Google Scholar 

  • Ajao V, Bruning H, Rijnaarts H, Temmink H (2018) Natural flocculants from fresh and saline wastewater: comparative properties and flocculation performances. Chem Eng J 349:622–632

    CAS  Google Scholar 

  • Akbulut O, Mace CR, Martinez RV, Kumar AA, Nie Z, Patton MR, Whitesides GM (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064

    CAS  Google Scholar 

  • Akhlaghi SP, Zaman M, Mohammed N, Brinatti C, Batmaz R, Berry R, Loh W, Tam KC (2015) Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization. Carbohydr Res 409:48–55

    CAS  Google Scholar 

  • Albrecht A (1972) Disposal of alum sludges. J Am Water Works Assoc 64(1):46–52

    CAS  Google Scholar 

  • Almarasy AA, Azim SA, Ebeid E-ZM (2019) The application of hematite (α-Fe2O3) nanoparticles in coagulation and flocculation processes of River Nile Rosetta branch surface water. SN Appl Sci 1:6. https://doi.org/10.1007/s42452-018-0006-y

    Article  CAS  Google Scholar 

  • Alqadami AA, Naushad M, Abdalla MA, Ahamad T, ALOthman ZA, Alshehri SM, Ghfar AA (2017) Efficient removal of toxic metal ions from wastewater using a recyclable nanocomposite: a study of adsorption parameters and interaction mechanism. J Clean Prod 156:426–436

    Google Scholar 

  • Anjum M, Miandad R, Waqas M, Gehany F, Barakat MA (2019) Remediation of wastewater using various nano-materials. Arab J Chem 12(8):4897–4919

    CAS  Google Scholar 

  • Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A (2012) Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab J Chem 5(1):1–23

    CAS  Google Scholar 

  • Ben Rebah F, Mnif W, Siddeeg M (2018) Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: a review. Symmetry 10(11):556

    CAS  Google Scholar 

  • Bharath G, Alhseinat E, Ponpandian N, Khan MA, Siddiqui MR, Ahmed F, Alsharaeh EH (2017) Development of adsorption and electrosorption techniques for removal of organic and inorganic pollutants from wastewater using novel magnetite/porous graphene-based nanocomposites. Sep Purif Technol 188:206–218

    CAS  Google Scholar 

  • Bharti S (2019) A critical review on flocculants and flocculation. Non-Metallic Mater Sci 01(01):11–21

    Google Scholar 

  • Biener J, Wittstock A, Baumann T, Weissmüller J, Bäumer M, Hamza A (2009) Surface chemistry in nanoscale materials. Materials 2(4):2404–2428

    CAS  Google Scholar 

  • Blanco A, Monte MC, Campona C, Balea A, Merayo N, Negro C (2018) Nanocellulose for industrial use. Handbook of nanomaterials for industrial applications, pp 74–126

  • Boczkaj G, Fernandes A (2017) Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J 320:608–633

    CAS  Google Scholar 

  • Borchate SS, Kulkarni GS, Kore VS, Kore SV (2014) A review on applications of coagulation-flocculation and ballast flocculation for water and wastewater. Int J Innov Eng Technol 4(4):216–223

    Google Scholar 

  • Business Wire (2018) Membrane filtration (RO, MF, UF, NF) market-global forecast to 2023-ResearchAndMarkets.com. https://www.businesswire.com/news/home/20180427005646/en/Membrane-Filtration-RO-MF-UF-NF-Market. Accessed Sept 2019

  • Business Wire (2019) Global activated carbon market 2019–2025: size, share&trends analysis&outlook-ResearchAndMarkets.com. https://www.businesswire.com/news/home/20190619005388/en/Global-Activated-Carbon-Market-2019-2025-Size-Share. Accessed Sept 2019

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155

    CAS  Google Scholar 

  • Eyley S, Vandamme D, Lama S, Van den Mooter G, Muylaert K, Thielemans W (2015) CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals. Nanoscale 7(34):14413–14421

    CAS  Google Scholar 

  • FAO (2016). AQUASTAT main database, Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en. Accessed Sept 2019

  • Farid MS, Shariati A, Badakhshan A, Anvaripour B (2013) Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol 131:555–559

    CAS  Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    CAS  Google Scholar 

  • Ghernaout B, Ghernaout D, Saiba A (2010) Algae and cyanotoxins removal by coagulation/flocculation: a review. Desalin Water Treat 20:133–143

    CAS  Google Scholar 

  • Hargreaves AJ, Vale P, Whelan J, Alibardi L, Constantino C, Dotro G, Cartmell E, Campo P (2018) Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater. Water Res 128:120–128

    CAS  Google Scholar 

  • He M, Cho B-U, Lee YK, Won JM (2016) Utilizing cellulose nanofibril as an eco-friendly flocculant for filler flocculation in papermaking. BioResources 11(4):10296–10313

    CAS  Google Scholar 

  • Higgins MW, Shakeel Rahmaan A, Devarapali RR, Shelke MV, Jha N (2018) Carbon fabric based solar steam generation for waste water treatment. Sol Energy 159:800–810

    CAS  Google Scholar 

  • HPS AK, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, Rafatullah M, Abdullah CK, Haafiz MKM, Dungani R (2016) A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohydr Polym 150:216–226

    CAS  Google Scholar 

  • Jagaba AH, Latiff AAA, Umaru I, Abubakar S, Lawal IM (2016) Treatment of palm oil mill effluent (POME) by coagulation-flocculation using different natural and chemical coagulant: a review. J Mech Civ Eng 13(6):67–75

    Google Scholar 

  • Jarvis P, Jefferson B, Gregory J, Parsons SA (2005) A review of floc strength and breakage. Water Res 39(14):3121–3137

    CAS  Google Scholar 

  • Joseph L, Boateng LK, Flora JRV, Park Y-G, Son A, Badawy M, Yoon Y (2013) Removal of bisphenol A and 17α-ethinyl estradiol by combined coagulation and adsorption using carbon nanomaterials and powdered activated carbon. Sep Purif Technol 107:37–47

    CAS  Google Scholar 

  • Jun LY, Mubarak NM, Yee MJ, Yon LS, Bing CH, Khalid M, Abdullah EC (2018) An overview of functionalised carbon nanomaterial for organic pollutant removal. J Ind Eng Chem 67:175–186

    CAS  Google Scholar 

  • Kamari A, Pulford ID, Hargreaves JSJ (2015) Biodegradation of chitosan and its effect on metal bioavailability. Environ Sci Pollut Res 22(3):1919–1930

    CAS  Google Scholar 

  • Kumar V, Othman N, Asharuddin S (2017) Application of natural coagulants to treat wastewater—a review. MATEC Web Conf 103:06016

    Google Scholar 

  • Kumari S, Kumar Annamereddy SH, Abanti S, Kumar Rath P (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int J Biol Macromol 104:1697–1705

    CAS  Google Scholar 

  • Lai M, Liu P, Lin H, Luo Y, Li H, Wang X, Sun R (2016) Interaction between chitosan-based clay nanocomposites and cellulose in a chemical pulp suspension. Carbohydr Polym 137:375–381

    CAS  Google Scholar 

  • Laux P, Tentschert J, Riebeling C, Braeuning A, Creutzenberg O, Epp A, Fessard V, Haas KH, Haase A, Hund-Rinke K, Jakubowski N, Kearns P, Lampen A, Rauscher H, Schoonjans R, Störmer A, Thielmann A, Mühle U, Luch A (2018) Nanomaterials: certain aspects of application, risk assessment and risk communication. Arch Toxicol 92(1):121–141

    CAS  Google Scholar 

  • Lee KE, Morad N, Teng TT, Poh BT (2012) Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: a review. Chem Eng J 203:370–386

    CAS  Google Scholar 

  • Lee CS, Robinson J, Chong MF (2014a) A review on application of flocculants in wastewater treatment. Process Saf Environ 92(6):489–508

    CAS  Google Scholar 

  • Lee CS, Chong MF, Robinson J, Binner E (2014b) A review on development and application of plant-based bioflocculants and grafted bioflocculants. Ind Eng Chem Res 53(48):18357–18369

    CAS  Google Scholar 

  • Lei Y (2013) Carbon nanotube flocculation as a green nanoseparation. Chem Lett 42(1):11–13

    CAS  Google Scholar 

  • Leshuk T, Holmes AB, Ranatunga D, Chen PZ, Jiang Y, Gu F (2018) Magnetic flocculation for nanoparticle separation and catalyst recycling. Environ Sci Nano 5:509–519

    CAS  Google Scholar 

  • Li Z, Wang B, Qin X, Wang Y, Liu C, Shao Q, Wang N, Zhang J, Wang Z, Shen C, Guo Z (2018) Superhydrophobic/superoleophilic polycarbonate/carbon nanotubes porous monolith for selective oil adsorption from water. ACS Sustain Chem Eng 6(11):13747–13755

    CAS  Google Scholar 

  • Liu J, Li P, Xiou H, Zhang Y, Shi X, Lü X, Chen X (2015) Understanding flocculation mechanism of graphene oxide for organic dyes from water: experimental and molecular dynamics simulation. AIP Adv 5(11):117151

    Google Scholar 

  • Liu T, Ding E, Xue F (2017) Polyacrylamide and poly(N,N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. Int J Biol Macromol 103:1107–1112

    CAS  Google Scholar 

  • Lu H, Wang J, Stoller M, Wang T, Bao Y, Hao H (2016) An overview of nanomaterials for water and wastewater treatment. Adv Mater Sci Eng 2016:1–10

    Google Scholar 

  • Lü T, Zhang S, Qi D, Zhang D, Zhao H (2018) Enhanced demulsification from aqueous media by using magnetic chitosan-based flocculant. J Colloid Interface Sci 518:76–83

    Google Scholar 

  • Ma J, Fu K, Shi J, Sun Y, Zhang X, Ding L (2016) Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohydr Polym 151:565–575

    CAS  Google Scholar 

  • Ma J, Fu X, Jiang L, Zhu G, Shi J (2018) Magnetic flocculants synthesized by Fe3O4 coated with cationic polyacrylamide for high turbid water flocculation. Environ Sci Pollut Res 25(26):25955–25966

    CAS  Google Scholar 

  • Mahamuni NN, Adewuyi YG (2010) Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: a review with emphasis on cost estimation. Ultrason Sonochem 17(6):990–1003

    CAS  Google Scholar 

  • Manafi MR, Manafi P, Agarwal S, Bharti AK, Asif M, Gupta VK (2017) Synthesis of nanocomposites from polyacrylamide and graphene oxide: application as flocculants for water purification. J Colloid Interface Sci 49:505–510

    Google Scholar 

  • Mishra S, Usha Rani G, Sen G (2012) Microwave initiated synthesis and application of polyacrylic acid grafted carboxymethyl cellulose. Carbohydr Polym 87(3):2255–2262

    CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5:623–658

    CAS  Google Scholar 

  • Muralikrishna IV, Manickam V (2017) Wastewater treatment technologies, chap 12. Environmental management: science and engineering for industry. Elsevier, Massachusetts, pp 248–293

    Google Scholar 

  • Nadella M, Sharma R, Chellam S (2020) Fit-for-purpose treatment of produced water with iron and polymeric coagulant for reuse in hydraulic fracturing: temperature effects on aggregation and high-rate sedimentation. Water Res 170:115330

    CAS  Google Scholar 

  • Nguyen NHA, Padil VVT, Slaveykova VI, Černík M, Ševců A (2018) Green synthesis of metal and metal oxide nanoparticles and their effect on the unicellular alga Chlamydomonas reinhardtii. Nanoscale Res Lett 13:159

    Google Scholar 

  • Nidheesh PV, Zhou M, Oturan MA (2018) An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197:210–227

    CAS  Google Scholar 

  • Noor MHM, Ngadi N, Luing WS (2018) Synthesis of magnetic cellulose as flocculant for pre-treatment of anaerobically treated palm oil mill effluent. Chem Eng Trans 63:589–594

    Google Scholar 

  • Nyzhnyk T (2017) High efficiency titanium coagulants for water treatment. Proceedings of the 1st annual conference of technology transfer: fundamental principles and innovative technical solutions, pp 54-56. https://doi.org/10.21303/2585-6847.2017.00486

  • Okaiyeto K, Nwodo UU, Okoli SA, Mabinya LV, Okoh AI (2016) Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. Microbiologyopen 5(2):177–211

    Google Scholar 

  • Othmani B, Khadhraoui M (2018) Plant extracts as coagulants-flocculants for wastewater treatment: a short review. In: Kallel A, Ksibi M, Dhia HB, Khélifi N (eds) Recent Advances in environmental science from the euro-mediterranean and surrounding regions. Advances in science technology & innovation. Springer, Cham, pp 1227–1229

    Google Scholar 

  • Özdemir K (2016) The use of carbon nanomaterials for removing natural organic matter in drinking water sources by a combined coagulation process. Nanomater Nanotechnol 6:1–12

    Google Scholar 

  • Pal S, Patra AS, Ghorai S, Sarkar AK, Das R, Sarkar S (2015) Modified guar gum/SiO2: development and application of a novel hybrid nanocomposite as a flocculant for the treatment of wastewater. Environ Sci Water Res Technol 1:84–95

    CAS  Google Scholar 

  • Pankratz TM (2000) Evaporation—a wastewater treatment alternative. Water and Wastes Digest. https://www.wwdmag.com/sludge-treatment/evaporation-wastewater-treatment-alternative. Accessed Sept 2019

  • Pavel K, Nikolay K, Oleg F (2017) Matrix-isolated nanocomposites–alumina–silicon and iron-silicon flocculants-coagulants. J Phys Sci Appl 7(2):36–41

    Google Scholar 

  • Pivarčiová L, Rosskopfová O, Galamboš M, Rajec P (2014) Sorption of nickel on chitosan. J Radioanal Nucl Chem 300(1):361–366

    Google Scholar 

  • Quinlan PJ, Tanvir A, Tam KC (2015) Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydr Polym 133:80–89

    CAS  Google Scholar 

  • Renault F, Sancey B, Badot P-M, Crini G (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45(5):1337–1348

    CAS  Google Scholar 

  • Rezakazemi M, Khajeh A, Mesbah M (2018) Membrane filtration of wastewater from gas and oil production. Environ Chem Lett 16(2):367–388

    CAS  Google Scholar 

  • Rocha J-DR, Rogers RE, Dichiara AB, Capasse RC (2017) Emerging investigators series: highly effective adsorption of organic aromatic molecules from aqueous environments by electronically sorted single-walled carbon nanotubes. Environ Sci Water Res Technol 3(2):203–212

    CAS  Google Scholar 

  • Rui LM, Daud Z, Latif AAA (2012) Treatment of leachate by coagulation-flocculation using different coagulants and polymer: a review. Int J Adv Sci Eng Inf Technol 2:2

    Google Scholar 

  • Salleh SNAM, Zin NSM, Othman N (2019) A review of wastewater treatment using natural material and its potential as aid and composite coagulant. Sains Malays 48(1):155–164

    Google Scholar 

  • Sami AJ, Khalid M, Iqbal S, Afzal M, Shakoori AR (2017) Synthesis and application of chitosan-starch based nanocomposite in wastewater treatment for the removal of anionic commercial dyes. Pakistan J Zool 49:21–26

    CAS  Google Scholar 

  • Santos TRT, Silva MF, Nishi L, Vieira AMS, Klein MRF, Andrade MB, Vieira MF, Bergamasco R (2016) Development of a magnetic coagulant based on Moringa oleifera seed extract for water treatment. Environ Sci Pollut Res 23(8):7692–7700

    CAS  Google Scholar 

  • Sari AM, Purnawan IE (2016) The influence of chitosan flocculant on the flocculation of microalgae Chlorella sp. ARPN J Eng Appl Sci 11:8

    Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7(4–5):331–342

    CAS  Google Scholar 

  • Schwaminger SP, Bauer D, Fraga-García P, Wagner FE, Berensmeier S (2017) Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm 19(2):246–255

    CAS  Google Scholar 

  • Shak KPY, Pang YL, Mah SK (2018) Nanocellulose: recent advances and its prospects in environmental remediation. Beilstein J Nanotechnol 9:2479–2498

    CAS  Google Scholar 

  • Simate GS (2015) The treatment of brewery wastewater for reuse by integration of coagulation/flocculation and sedimentation with carbon nanotubes ‘sandwiched’ in a granular filter bed. J Ind Eng Chem 21:1277–1285

    CAS  Google Scholar 

  • Simate GS, Iyuke SE, Ndlovu S, Heydenrych M (2012) The heterogeneous coagulation and flocculation of brewery wastewater using carbon nanotubes. Water Res 46(4):1185–1197

    CAS  Google Scholar 

  • Song J, Zhang F, Huang Y, Keller AA, Tang X, Zhang W, Jia W, Santos J (2018) Highly efficient bacterial removal and disinfection by magnetic barium phosphate nanoflakes with embedded iron oxide nanoparticles. Environ Sci Nano 5(6):1341–1349

    CAS  Google Scholar 

  • Suopajärvi T, Liimatainen H, Hormi O, Niinimäki J (2013) Coagulation–flocculation treatment of municipal wastewater based on anionized nanocelluloses. Chem Eng J 231:59–67

    Google Scholar 

  • Suresh A, Grygolowicz-Pawlak E, Pathak S, Poh LS, Majid MBA, Dominiak D, Bugge TV, Gao X, Ng WJ (2018) Understanding and optimization of the flocculation process in biological wastewater treatment processes: a review. Chemosphere 210:401–416

    CAS  Google Scholar 

  • Teh CY, Budiman PM, Shak KPY, Wu TY (2016) Recent advancement of coagulation-flocculation and its application in wastewater treatment. Ind Eng Chem Res 55(16):4363–4389

    CAS  Google Scholar 

  • Tian G, Chen Y, Liang Y, Gao Y (2019) Synthesis of nanocomposites from cationic polyacrylamide and modified carbon black: application as flocculants for oily sludge suspension. Appl Organometal Chem 33(1):e4620. https://doi.org/10.1002/aoc.4620

    Article  CAS  Google Scholar 

  • UNWWDR (2019) The United Nation World Development Report 2019: Leaving no one behind. https://www.unwater.org/publications/world-water-development-report-2019/. Accessed Sept 2019

  • Vajihinejad V, Gumfekar SP, Bazoubandi B, Najafabadi ZR, Soares JBP (2018) Water soluble polymer flocculants: synthesis, characterization, and performance assessment. Macromol Mater Eng 304:1800526

    Google Scholar 

  • Vandamme D, Foubert I, Fraeye I, Muylaert K (2012) Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour Technol 124:508–511

    CAS  Google Scholar 

  • Vandamme D, Eyley S, Mooter GVD, Muylaert K, Thielemans W (2015) Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Bioresour Technol 194:270–275

    CAS  Google Scholar 

  • Verma AK, Dash RR, Bhunia P (2012) A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J Environ Manag 93(1):154–168

    CAS  Google Scholar 

  • Vlasova II, Kapralov AA, Michael ZP, Burkert SC, Shurin MR, Star A, Shvedova AA, Kagan VE (2016) Enzymatic oxidative biodegradation of nanoparticles: mechanisms, significance and applications. Toxicol Appl Pharmacol 299:58–69

    CAS  Google Scholar 

  • Wang Z, Wang C, Wang P, Qian J, Hou J, Ao Y, Wu B (2015) The performance of chitosan/montmorillonite nanocomposite during the flocculation and floc storage processes of Microcystis aeruginosa cells. Environ Sci Pollut Res 22(14):11148–11161

    CAS  Google Scholar 

  • Wang T, Yang W-L, Hong Y, Hou Y-L (2016) Magnetic nanoparticles grafted with amino-riched dendrimer as magnetic flocculant for efficient harvesting of oleaginous microalgae. Chem Eng J 297:304–314

    CAS  Google Scholar 

  • Wang D, Yu H, Fan X, Gu J, Ye S, Yao J, Ni Q (2018) High aspect ratio carboxylated cellulose nanofibers crosslinked to robust aerogels for superabsorption—flocculants: paving way from nanoscale to macroscale. ACS Appl Mater Interfaces 10(24):20755–20766

    CAS  Google Scholar 

  • Wei H, Gao B, Ren J, Li A, Yang H (2018) Coagulation/flocculation in dewatering of sludge: a review. Water Res 143:608–631

    CAS  Google Scholar 

  • Williams PJLB, Williams Laurens LM (2010) Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy Environ Sci 3:554–590

    CAS  Google Scholar 

  • Xu L-H, Patil DS, Yang J, Xiao J (2015) Metal oxide nanostructure: synthesis, properties, and applications. J Nanotechnol 2015:1–2

    CAS  Google Scholar 

  • Yang R, Li H, Huang M, Yang H, Li A (2016) A review on chitosan-based flocculants and their applications in water treatment. Water Res 95:59–89

    CAS  Google Scholar 

  • Yang R, Li D, Li A, Yang H (2018a) Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Appl Clay Sci 151:20–28

    CAS  Google Scholar 

  • Yang Y, Zhao R, Zhang T, Zhao K, Xioa P, Ma Y, Ajayan PM, Shi G, Chen Y (2018b) Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1):829–835

    CAS  Google Scholar 

  • Yaser AZ, Nurmin B, Rosalam S (2013) Coagulation/flocculation of anaerobically treated palm oil mill effluent (AnPOME): A review. In: Pogaku R, Bono A, Chu CM (eds) Development in sustainable chemical and bioprocess technology. Springer, Massachusetts, pp 3–9

    Google Scholar 

  • Yaser AZ, Cassey TL, Hairul MA, Shazwan AS (2014) Current review on the coagulation/flocculation of lignin containing wastewater. Int J Waste Resour 04:153. https://doi.org/10.4172/2252-5211.1000153

    Article  Google Scholar 

  • Yin H, Liu L, Wang X, Wang T, Zhou Y, Liu B, Shan Y, Wang L, Lü X (2018) A novel flocculant prepared by lignin nanoparticles-gelatin complex from switchgrass for the capture of Staphylococcus aureus and Escherichia coli. Colloids Surf A 545:51–59

    CAS  Google Scholar 

  • Yoo SS (2018) Operating cost reduction of in-line coagulation/ultrafiltration membrane process attributed to coagulation condition optimization for irreversible fouling control. Water 10(8):1076

    Google Scholar 

  • Yu H-Y, Zhang D-Z, Lu F-F, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643

    CAS  Google Scholar 

  • Yusoff MS, Aziz HA, Zamri MFMA, Suja F, Abdullah AZ, Basri NEA (2018) Floc behavior and removal mechanisms of cross-linked Durio zibethinus starch as a natural flocculant for landfill leachate coagulation-flocculation treatment. Waste Manag 74:362–372

    CAS  Google Scholar 

  • Zaman B (2018) Potential of natural flocculant in coagulation-flocculation wastewater treatment process. E3S Web Conf 73:05006. https://doi.org/10.1051/e3sconf/20187305006

    Article  CAS  Google Scholar 

  • Zhang M, Li J (2009) Carbon nanotube in different shapes. Mater Today 12:12–18

    CAS  Google Scholar 

  • Zhou X (2016) Cationic cellulose nanocrystals (CNCs) for organic and inorganic colloids flocculation. Master’s thesis. Retrieved from http://hdl.handle.net/10012/10235

  • Zhou Y, Franks GV (2006) Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 22:6775–6786

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Malaysia, for providing research facilities to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kamari.

Ethics declarations

Conflict of interest

The authors declare no conflict of scientific and financial interest.

Additional information

Editorial responsibility: Josef Trögl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumadi, J., Kamari, A., Hargreaves, J.S.J. et al. A review of nano-based materials used as flocculants for water treatment. Int. J. Environ. Sci. Technol. 17, 3571–3594 (2020). https://doi.org/10.1007/s13762-020-02723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02723-y

Keywords

Navigation