Skip to main content
Log in

The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Methyl violet is one of the most important pollutants responsible for destabilizing aquatic ecosystems, and it is poisonous to most of the animals. Inhalation of methyl violet in humans may cause irritation in the respiratory tract, while eating it may irritate the digestive tract. In this study, the carbon of palm kernel was used as a biological absorbent to remove the methyl violet pollutants from textile industry sewages. Further, the influential variables were studied on sorption, such as the amount of adsorbent (0.04–0.15 g), pH (4–10), contact time (1–120 min), temperature (25–40 °C) and different dye concentrations (10–120 mg L−1). The optimum values of adsorbent, pH, contact time, temperature and dye concentration were 0.1 g, 7, 30 min, 25 °C and 50 mg L−1, respectively. Under optimum conditions, the percentages of dye removal were 98.85 and 91.08 in relation to modified and unmodified adsorbent, respectively. The adsorption data were in good agreement with Langmuir–Freundlich isotherm. Based on the results, data were mostly consistent with pseudo-second-order kinetics; different thermodynamic parameters such as free energy absorption (ΔG°), entropy (ΔS°) and enthalpy (ΔH°) were further investigated. These studies (ΔG° = − 7651.9141 kJ mol−1 for unmodified adsorbent and ΔG° = − 13,799.6138 kJ mol−1 for modified adsorbent, ΔS° = 0.135 for unmodified adsorbent and ΔS° = 26.195 for modified adsorbent, ΔH° = 32.702 kJ mol−1 K−1 for unmodified adsorbent and ΔH° = 0.069 kJ mol−1 K−1 for modified adsorbent) showed that adsorption is a spontaneous and endothermic process. The maximum adsorption capacities of methyl violet were 107.3 and 83.91 mg g−1 in relation to the modified and unmodified adsorbent, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelwahab O, El Sikaily A, Khaled A, El Nemr A (2007) Mass-transfer processes of chromium (VI) adsorption onto guava seeds. Chem Ecol 23(1):73–85

    Article  CAS  Google Scholar 

  • Annadurai G, Juang RS, Lee DJ (2002) Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J Hazard Mater 92(3):263–274

    Article  CAS  Google Scholar 

  • Azizian S, Haerifar M, Bashiri H (2009) Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem Eng J 146(1):36–41

    Article  CAS  Google Scholar 

  • Bogdanov S (2006) Contaminants of bee products. Apidologie 37(1):1–18

    Article  CAS  Google Scholar 

  • Bulut E, Özacar M, Şengil İA (2008) Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater 115(3):234–246

    Article  CAS  Google Scholar 

  • Cheung CW, Porter JF, McKay G (2000) Sorption kinetics for the removal of copper and zinc from effluents using bone char. Sep Purif Technol 19(1):55–64

    Article  CAS  Google Scholar 

  • Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372–380

    Article  CAS  Google Scholar 

  • Chompuchan C, Satapanajaru T, Suntornchot P, Pengthamkeerati P (2010) Decolorization of reactive black 5 and reactive red 198 using nanoscale zerovalent iron. Int J Environ Sci Eng 2(3):123–127

    Google Scholar 

  • Deniz F (2013) Dye removal by almond shell residues: studies on biosorption performance and process design. Mater Sci Eng, C 33(5):2821–2826

    Article  CAS  Google Scholar 

  • Dhal B, Thatoi HN, Das NN, Pandey BD (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Article  CAS  Google Scholar 

  • Doğan M, Özdemir Y, Alkan M (2007) Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigm 75(3):701–713

    Article  CAS  Google Scholar 

  • Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162(2):616–645

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Detoxification of pesticide waste via activated carbon adsorption process. J Hazard Mater 175(1–3):1–11

    Article  CAS  Google Scholar 

  • Greluk M, Hubicki Z (2011) Efficient removal of acid orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination 278(1):219–226

    Article  CAS  Google Scholar 

  • Hameed BH (2008) Equilibrium and kinetic studies of methyl violet sorption by agricultural waste. J Hazard Mater 154(1):204–212

    Article  CAS  Google Scholar 

  • Hameed BH, Ahmad AA, Aziz N (2009) Adsorption of reactive dye on palm-oil industry waste: equilibrium, kinetic and thermodynamic studies. Desalination 247(1–3):551–560

    Article  CAS  Google Scholar 

  • Han R, Zhang J, Han P, Wang Y, Zhao Z, Tang M (2009) Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chem Eng J 145(3):496–504

    Article  CAS  Google Scholar 

  • Ho YS, Chiang TH, Hsueh YM (2005) Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochem 40(1):119–124

    Article  CAS  Google Scholar 

  • Huong PT, Lee BK, Kim J, Lee CH (2016) Nitrophenols removal from aqueous medium using Fe-nano mesoporous zeolite. Mater Des 101:210–217

    Article  CAS  Google Scholar 

  • Kobya M, Gengec E, Sensoy MT, Demirbas E (2014) Treatment of textile dyeing wastewater by electrocoagulation using Fe and Al electrodes: optimisation of operating parameters using central composite design. Color Technol 130(3):226–235

    Article  CAS  Google Scholar 

  • Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wei B (2003) Competitive adsorption of Pb 2+, Cu 2+ and Cd 2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41(14):2787–2792

    Article  CAS  Google Scholar 

  • Li P, Su YJ, Wang Y, Liu B, Sun LM (2010) Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder. J Hazard Mater 179(1):43–48

    Article  CAS  Google Scholar 

  • Morales-Pérez AA, Arias C, Ramírez-Zamora RM (2016) Removal of atrazine from water using an iron photo catalyst supported on activated carbon. Adsorption 22(1):49–58

    Article  CAS  Google Scholar 

  • Mostafavi ST, Mehrnia MR, Rashidi AM (2009) Preparation of nanofilter from carbon nanotubes for application in virus removal from water. Desalination 238(1–3):271–280

    Article  CAS  Google Scholar 

  • Nwankwegu AS, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11

    Article  Google Scholar 

  • Ofomaja AE, Ho YS (2008) Effect of temperatures and pH on methyl violet biosorption by Mansonia wood sawdust. Bioresour Technol 99(13):5411–5417

    Article  CAS  Google Scholar 

  • Özer A, Özer D, Özer A (2004) The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): determination of the equilibrium and thermodynamic parameters. Process Biochem 39(12):2183–2191

    Article  CAS  Google Scholar 

  • Rahman MS, Islam MR (2009) Effects of pH on isotherms modeling for Cu(II) ions adsorption using maple wood sawdust. Chem Eng J 149(1):273–280

    Article  CAS  Google Scholar 

  • Rangarajan SK (1973) Adsopption isotherms—A critique. J Electroanal Chem Interfacial Electrochem 45(2):283–293

    Article  CAS  Google Scholar 

  • Shojaei S (2018) Optimization of process variables by the application of response surface methodology for dye removal using nanoscale zero-valent iron. Int J Environ Sci Technol, 1–10. https://doi.org/10.1007/s13762-018-1866-9

    Article  CAS  Google Scholar 

  • Shojaei S, Shojaei S (2017) Experimental design and modeling of removal of Acid Green 25 dye by nanoscale zero-valent iron. Euro Mediterr J Environ Integr 2(1):15

    Article  Google Scholar 

  • Shojaei S, Khammarnia S, Shojaei S, Sasani M (2017a) Removal of reactive red 198 by nanoparticle zero valent iron in the presence of hydrogen peroxide. J Water Environ Nanotechnol 2(2):129–135

    CAS  Google Scholar 

  • Shojaei S, Shojaei S, Sasani M (2017b) The efficiency of eliminating direct red 81 by zero-valent iron nanoparticles from aqueous solutions using response surface model (RSM). Model Earth Syst Environ 3(1):27

    Article  Google Scholar 

  • Sun L, Wan S, Luo W (2013) Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies. Biores Technol 140:406–413

    Article  CAS  Google Scholar 

  • Thinakaran N, Panneerselvam P, Baskaralingam P, Elango D, Sivanesan S (2008) Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells. J Hazard Mater 158(1):142–150

    Article  CAS  Google Scholar 

  • Wu JS, Liu CH, Chu KH, Suen SY (2008) Removal of cationic dye methyl violet 2B from water by cation exchange membranes. J Membr Sci 309(1):239–245

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang W, Liao X, Zhang J, Hou Y, Xiao Z, Hu X (2010) Degradation of diazinon in apple juice by ultrasonic treatment. Ultrason Sonochem 17(4):662–668

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to University of Payame Noor for kind support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shojaei.

Additional information

Editorial responsibility: Necip Atar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehr, H.V., Saffari, J., Mohammadi, S.Z. et al. The removal of methyl violet 2B dye using palm kernel activated carbon: thermodynamic and kinetics model. Int. J. Environ. Sci. Technol. 17, 1773–1782 (2020). https://doi.org/10.1007/s13762-019-02271-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02271-0

Keywords

Navigation