Skip to main content
Log in

Optimization of carbohydrate productivity of Spirulina microalgae as a potential feedstock for bioethanol production

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The main goal of this research is to use the biomass productivity, carbohydrate content, and carbohydrate productivity as useful responses for optimization of macronutrients concentrations (K2HPO4, NaHCO3, and NaNO3) in cultivation of Spirulina microalgae as a feedstock for bioethanol production. In this study, individual and synergistic effects of medium components on the mentioned responses were investigated. The culture medium was optimized using central composite design for achieving the maximize biomass productivity (165 mg L−1  day−1 at K2HPO4: 438 mg L−1, NaHCO3: 15.92 g L−1, and NaNO3: 0.5 g L−1), carbohydrate content (42.0% of dry mass at K2HPO4: 192 mg L−1, NaHCO3: 5.71 g L−1, and NaNO3: 0.63 g L−1), and finally carbohydrate productivity (56.97 mg L−1 day−1 at K2HPO4: 359 mg L−1, NaHCO3: 9.80 g L−1, and NaNO3: 0.60 g L−1). The most significant factors on the biomass productivity and carbohydrate productivity were K2HPO4 and NaHCO3. On the other hand, NaHCO3 was the most effective factor on the carbohydrate content. The results showed a significant interaction between K2HPO4 and NaNO3 (p value < 0.05) on the biomass productivity and carbohydrate productivity. In addition, the model revealed a significant interaction between K2HPO4 and NaHCO3 on the carbohydrate content. The concentrations of NaNO3 and NaHCO3 in modified medium were remarkably lower than those in Zarrouk medium. Some possible metabolic pathways causing these effects and interactions were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622. doi:10.1093/jxb/erg076

    Article  CAS  Google Scholar 

  • Bezerra PR, Matsudo MC, Sato S, Perego P, Converti A, de Carvalho JCM (2011) Effects of photobioreactor configuration, nitrogen source and light intensity on the fed-batch cultivation of Arthrospira (Spirulina) platensis. Bioenergetic aspects. Biomass Bioenerg 37:309–317. doi:10.1016/j.biombioe.2011.11.007

    Article  CAS  Google Scholar 

  • Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Chang 18:13–25. doi:10.1007/s11027-010-9271-9

    Article  Google Scholar 

  • Çelekli A, Yavuzatmaca M, Bozkurt H (2009) Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresour Technol 100:3625–3629. doi:10.1016/j.biortech.2009.02.055

    Article  CAS  Google Scholar 

  • Costa JAV, Linde GA, Atala DIP, Mibielli GM, KruÈger RT (2000) Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J Microbiol Biotechnol 16:15–18. doi:10.1023/A:1008992826344

    Article  Google Scholar 

  • Costa JAV, Cozza KL, Oliveira L, Magagnin G (2001) Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J Microbiol Biotechnol 17:439–442

    Article  CAS  Google Scholar 

  • Costa JAV, Colla LML, Filho PD, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607. doi:10.1023/A:1016822717583

    Article  Google Scholar 

  • da Rosa GM, Moraes L, de Souza M da RAZ, Costa JAV (2016) Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production. Bioresour Technol 200:528–534. doi:10.1016/j.biortech.2015.10.025

    Article  CAS  Google Scholar 

  • Danesi EDG, Rangel-Yagui CO, Sato S, de Carvalho JCM (2011) Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources. Brazilian J Microbiol 42:362–373

    Article  CAS  Google Scholar 

  • de Farias Silva CE, Sforza E (2016) Carbohydrate productivity in continuous reactor under nitrogen limitation: effect of light and residence time on nutrient uptake in Chlorella vulgaris. Process Biochem 51:2112–2118. doi:10.1016/j.procbio.2016.09.015

    Article  CAS  Google Scholar 

  • Depraetere O, Pierre G, Deschoenmaeker F, Badri H, Foubert I, Leys N, Markou G, Wattiez R, Michaud P, Muylaert K (2015) Harvesting carbohydrate-rich Arthrospira platensis by spontaneous settling. Bioresour Technol 180:16–21. doi:10.1016/j.biortech.2014.12.084

    Article  CAS  Google Scholar 

  • Devriese M, Tsakaloudi V, Garbayo I, León R, Vílchez C, Vigara J (2001) Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiol Biochem 39:443–448

    Article  CAS  Google Scholar 

  • Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    Article  CAS  Google Scholar 

  • Ehsan S, Mahmoudzadeh A, Abdul M (2013) A review on green energy potentials in Iran. Renew Sustain Energy Rev 27:533–545. doi:10.1016/j.rser.2013.07.015

    Article  Google Scholar 

  • Esen M, Urek RO (2015) Ammonium nitrate and iron nutrition effects on some nitrogen assimilation enzymes and metabolites in Spirulina platensis. Biotechnol Appl Biochem 62:275–286

    Article  CAS  Google Scholar 

  • Fernandez E, Galvan A (2007) Inorganic nitrogen assimilation in Chlamydomonas. J Exp Bot 58:2279–2287. doi:10.1093/jxb/erm106

    Article  CAS  Google Scholar 

  • Fujisawa T, Narikawa R, Okamoto S, Ehira S, Yoshimura H, Suzuki I, Horikawa H, Yashiro I, Omata S, Takarada H, Katano Y, Kosugi H (2010) Genomic structure of an economically important cyanobacterium, Arthrospira (Spirulina) platensis NIES-39. DNA Res Adv Access. doi:10.1093/dnares/dsq004

    Article  Google Scholar 

  • Glass JB, Wolfe-Simon F, Anbar AD (2009) Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae. Geobiology 7:100–123. doi:10.1111/j.1472-4669.2009.00190.x

    Article  CAS  Google Scholar 

  • González-fernández C, Ballesteros M (2012) Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol Adv 30:1655–1661. doi:10.1016/j.biotechadv.2012.07.003

    Article  CAS  Google Scholar 

  • Gordillo FJL, Jiménez C, Figueroa FL, Niell FX (1999) Effects of increased atmospheric CO2 and N supply on photosynthesis, growth and cell composition of the cyanobacterium Spirulina platensis (Arthrospira). J Appl Phycol 10:461–469

    Article  Google Scholar 

  • Inokuchi R, Kuma K, Miyata T, Okada M (2002) Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiol Plant 116:1–11

    Article  CAS  Google Scholar 

  • Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotechnol 23:346–351. doi:10.1016/j.copbio.2011.10.013

    Article  CAS  Google Scholar 

  • Karandashova IV, Elanskaya IV (2005) Genetic Control and Mechanisms of Salt and Hyperosmotic Stress Resistance in Cyanobacteria. Russ J Genet 41:1311–1321

    Article  CAS  Google Scholar 

  • Kong WB, Hua SF, Cao H, Mu YW, Yang H, Song H, Xia CG (2012) Optimization of mixotrophic medium components for biomass production and biochemical composition biosynthesis by Chlorella vulgaris using response surface methodology. J Taiwan Inst Chem Eng 43:360–367. doi:10.1016/j.jtice.2011.11.007

    Article  CAS  Google Scholar 

  • Leduy A, Therien N (1977) An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnol Bioeng 19:1219–1224. doi:10.1002/bit.260190812

    Article  Google Scholar 

  • Markandeya Dhiman N, Shukla SP, Kisku GC (2017) Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology. J Clean Prod 149:597–606. doi:10.1016/j.jclepro.2017.02.078

    Article  CAS  Google Scholar 

  • Markou G (2012) Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresour Technol 116:533–535. doi:10.1016/j.biortech.2012.04.022

    Article  CAS  Google Scholar 

  • Markou G, Angelidaki I, Georgakakis D (2012a) Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Appl Microbiol Biotechnol 96:631–645. doi:10.1007/s00253-012-4398-0

    Article  CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012b) Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 28:2661–2670. doi:10.1007/s11274-012-1076-4

    Article  CAS  Google Scholar 

  • Markou G, Chatzipavlidis I, Georgakakis D (2012c) Carbohydrates production and bio-flocculation characteristics in cultures of Arthrospira (Spirulina) platensis: improvements through phosphorus limitation process. Bioenergy Res 5:915–925. doi:10.1007/s12155-012-9205-3

    Article  CAS  Google Scholar 

  • Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 6:3937–3950. doi:10.3390/en6083937

    Article  CAS  Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuel for power generation. Renew Sustain Energy Rev 58:180–197. doi:10.1016/j.rser.2015.12.150

    Article  Google Scholar 

  • Nelson D L, Lehninger A L, Cox M M (2008) Lehninger principles of biochemistry, 5th edn. W.H. Freeman, New York

    Google Scholar 

  • Nielsen SS (2010) Phenol-sulfuric acid method for total carbohydrates. In: Food analysis laboratory manual. Food science texts series. Springer, Boston, MA. pp. 103–113. doi:10.1007/978-1-4419-1463-7  

    Google Scholar 

  • Pelizer LH, Danesi EDG, de Rangel CO, Sassano CEN, Carvalho JCM, Sato S, Moraes IO (2003) Influence of inoculum age and concentration in Spirulina platensis cultivation. J Food Eng 56:371–375. doi:10.1016/S0260-8774(02)00209-1

    Article  Google Scholar 

  • Pogoryelov D, Sudhir PR, Kovacs L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437

    Article  CAS  Google Scholar 

  • Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M (2008) Influence of light quality and intensity in the cultivation of Spirulina platensis from Toliara (Madagascar) in a closed system. J Chem Technol Biotechnol 83:842–848. doi:10.1002/jctb.1878

    Article  CAS  Google Scholar 

  • Ronda SR, Parupudi PLC, Vemula S, Tumma S, Botlagunta M, Settaluri VS, Lele S, Sharma S, Kandala C (2014) Optimization of medium components using orthogonal arrays for γ-Linolenic acid production by Spirulina platensis. Korean J Chem Eng 31:1839–1844. doi:10.1007/s11814-014-0082-7

    Article  CAS  Google Scholar 

  • Trabelsi L, Ben Ouada H, Bacha H, Ghoul M (2009) Combined effect of temperature and light intensity on growth and extracellular polymeric substance production by the cyanobacterium Arthrospira platensis. J Appl Phycol 21:405–412. doi:10.1007/s10811-008-9383-8

    Article  CAS  Google Scholar 

  • Vieira Salla AC, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE, Colla LM, Costa JAV (2016) Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresour Technol 209:133–141. doi:10.1016/j.biortech.2016.02.069

    Article  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution A L’etude D’une cyanophyceae: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch et Gardna) Geitler. 96

  • Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported through the Nanotechnology Research Center of Graduate Faculty of Environment, University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Baghdadi.

Additional information

Editorial responsibility: Gobinath Ravindran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tourang, M., Baghdadi, M., Torang, A. et al. Optimization of carbohydrate productivity of Spirulina microalgae as a potential feedstock for bioethanol production. Int. J. Environ. Sci. Technol. 16, 1303–1318 (2019). https://doi.org/10.1007/s13762-017-1592-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1592-8

Keywords

Navigation