Skip to main content
Log in

Genetic Control and Mechanisms of Salt and Hyperosmotic Stress Resistance in Cyanobacteria

  • Theoretical Papers and Reviews
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Exposure to high concentrations of environmental NaCl exerts two stress effects on living cells, increasing the osmotic pressure and the concentration of inorganic ions. Salt stress dramatically suppresses the photosynthetic activity in cells of phototrophic organisms, such as cyanobacteria. During salt adaptation, cyanobacterial cells accumulate osmoprotectors, export excessive Na+ with the help of Na+/H+ antiporters, and actively absorb K+ with the help of K+-transporting systems. These physiological processes are accompanied by induction or suppression of several genes involved in salt adaptation. The review considers the main mechanisms responsible for the resistance of cyanobacterial cells to salt and hyperosmotic stresses. Special emphasis is placed on recent achievements in studying the genetic control of salt resistance and regulation of gene expression during adaptation of cyanobacteria to salt and hyperosmotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Reed, R.H., Richardson, D.L., and Stewart, W.D.P., Osmotic Responses of Unicellular Blue-Green Algae (Cyanobacteria): Changes in Cell Volume and Intracellular Solute Levels in Response to Hyperosmotic Treatment, Plant Cell Environ., 1986, vol. 9, pp. 25–31.

    Google Scholar 

  2. Kempf, B. and Bremer, E., Uptake and Synthesis of Compatible Solutes As Microbial Stress Responses to High-Osmolality Environments, Arch. Microbiol., 1998, vol. 170, pp. 319–330.

    Article  CAS  PubMed  Google Scholar 

  3. Poolman, B. and Glaasker, E., Regulation of Compatible Solute Accumulation in Bacteria, Mol. Microbiol., 1998, vol. 29, pp. 397–407.

    Article  CAS  PubMed  Google Scholar 

  4. Reed, R.H. and Stewart, W.D.P., The Responses of Cyanobacteria to Salt Stress, Biochemistry of the Algae and Cyanobacteria, Rogers, L.J. and Gallon, J.R., Eds., Oxford: Clarendon, 1988, pp. 217–231.

    Google Scholar 

  5. Bremer, E. and Kramer, R., Coping with Osmotic Challenges: Osmoregulation through Accumulation and Release of Compatible Solutes in Bacteria, Bacterial Stress Responses, Storz, G. and Hengge-Aronis, R., Eds., Washington, DC: Am. Soc. Microbiol., 2000, pp. 79–97.

    Google Scholar 

  6. Hagemann, M. and Erdmann, N., Environmental Stresses, Cyanobacterial Nitrogen Metabolism and Environmental Biotechnology, Rai, A.K., Ed., New Dehli: Springer, Heidelberg & Narosa, 1997, pp. 156–221.

    Google Scholar 

  7. Iyer, V., Fernandes, T., and Apte, S.K., A Role for Osmotic Stress-Induced Proteins in the Osmotolerance of a Nitrogen-Fixing Cyanobacterium, Anabaena sp. Strain L-31, J. Bacteriol., 1994, vol. 176, pp. 5868–5870.

    CAS  PubMed  Google Scholar 

  8. Vinnemeier, J. and Hagemann, M., Identification of Salt-Regulated Genes in the Genome of the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Subtractive RNA Hybridization, Arch. Microbiol., 1999, vol. 172, pp. 377–386.

    Article  CAS  PubMed  Google Scholar 

  9. Torrecilla, I., Leganes, F., Bonilla, I., and Fernandez-Pinas, F., Calcium Transients in Response to Salinity and Osmotic Stress in the Nitrogen-Fixing Cyanobacterium Anabaena sp. PCC 7120, Expressing Cytosolic Apoaequorin, Plant Cell Environ., 2001, vol. 24, pp. 641–450.

    Article  CAS  Google Scholar 

  10. Hare, P.D., Cress, W.A., and van Staden, J., Dissecting the Roles of Osmolyte Accumulation during Stress, Plant Cell Environ., 1998, vol. 21, pp. 535–553.

    Article  CAS  Google Scholar 

  11. Hagemann, M., Schoor, A., Jeanjean, R., et al., The Gene stpA from Synechocystis sp. Strain PCC 6803 Encodes for the Glucosylglycerol-Phosphate Phosphatase Involved in Cyanobacterial Salt Adaptation, J. Bacteriol., 1997, vol. 179, pp. 1727–1733.

    CAS  PubMed  Google Scholar 

  12. Reed, R.H., Borovitzka, L.J., Mackay, M.A., et al., Organic Solute Accumulation in Osmotically Stressed Cyanobacteria, FEMS Microbiol. Rev., 1986, vol. 39, pp. 51–56.

    CAS  Google Scholar 

  13. Reed, R.H. and Stewart, W.D.P., Osmotic Adjustment and Organic Solute Accumulation in Unicellular Cyanobacteria from Freshwater and Marine Habitats, Mar. Biol. (Berlin), 1985, vol. 88, pp. 1–9.

    Article  CAS  Google Scholar 

  14. Hagemann, M., Richter, S., and Mikkat, S., The ggtA Gene Encodes a Subunit of the Transport System for the Osmoprotective Compound Glycosylglycerol in Synechocystis sp. Strain PCC 6803, J. Bacteriol., 1997, vol. 179, pp. 714–720.

    CAS  PubMed  Google Scholar 

  15. Warr, S.R.C., Reed, R.H., and Stewart, W.D.P., Carbohydrate Accumulation in Osmotically Stressed Cyanobacteria (Blue-Green Algae): Interactions of Temperature and Salinity, New Phytol., 1985, vol. 100, pp. 285–292.

    CAS  Google Scholar 

  16. Tel-Or, E., Spath, S., Packer, L., and Mehlhorn, R.J., Carbon-13 NMR Studies of Salt Shock-Induced Carbohydrate Turnover in the Marine Cyanobacterium Agmenellum quadruplicatum, Plant Physiol., 1986, vol. 82, pp. 646–652.

    CAS  PubMed  Google Scholar 

  17. Mackay, M. and Norton, R.S., 13C Nuclear Magnetic Resonance Study of Biosynthesis of Glucosylglycerol by Cyanobacterium under Osmotic Stress, J. Gen. Microbiol., 1987, vol. 130, pp. 2177–2191.

    Google Scholar 

  18. Erdmann, N., Berg, C., and Hagemann, M., Missing Salt Adaptation of Microcystis firma (Cyanobacterium) in the Dark, Arch. Hydrobiol., 1989, vol. 114, pp. 521–530.

    Google Scholar 

  19. Allakhverdiev, S.I., Nishiyama, Y., and Suzuki, I., Genetic Engineering of the Unsaturation of Fatty Acids in Membrane Lipids Alters the Tolerance of Synechocystis to Sail Stress, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 5862–5867.

    Article  CAS  PubMed  Google Scholar 

  20. Hagemann, M. and Erdmann, N., Activation and Pathway of Glucosylglycerol Biosynthesis in the Cyanobacterium Synechocystis sp. PCC 6803, Arch. Microbiol., 1994, vol. 140, pp. 1427–1431.

    CAS  Google Scholar 

  21. Hagemann, M., Richter, S., Zuther, E., and Schoor, A., Characterization of the Glucosylglycerol-Phosphate Accumulating, Salt-Sensitive Mutant of the Cyanobacterium Synechocystis sp. PCC 6803, Arch. Microbiol., 1996, vol. 166, pp. 83–91.

    Article  CAS  PubMed  Google Scholar 

  22. Hagemann, M., Schoor, A., Mikkat, S., et al., The Biochemistry and Genetics of the Synthesis of Osmoprotective Compounds in Cyanobacteria, Microbiology and Biogeochemistry of Hypersaline Environments, Oren, A., Ed., Boca Raton: CRC, 1999, pp. 177–186.

    Google Scholar 

  23. Marin, K., Zuther, E., Kerstan, T., et al., The ggpS Gene from Synechocystis sp. Strain PCC 6803 Encoding Glucosylglycerol-Phosphate Synthase Is Involved in Osmolyte Synthesis, J. Bacteriol., 1998, vol. 180, pp. 4843–4849.

    CAS  PubMed  Google Scholar 

  24. Deshnium, P., Los, D.A., Hayashi, H., et al., Transformation of Synechococcus with a Gene for Choline Oxidase Enhances Tolerance to Salt Stress, Plant. Mol. Biol., 1995, vol. 29, pp. 897–907.

    Article  CAS  PubMed  Google Scholar 

  25. Sakamoto, A. and Murata, N., The Role of Glycine Betaine in the Protection of Plants from Stress: Clues from Transgenic Plants, Plant Cell Environ., 2002, vol. 25, pp. 163–171.

    Article  CAS  PubMed  Google Scholar 

  26. Halfter, U., Ishitani, M., and Zhu, J.-K., The Arabidopsis SOS2 Protein Kinase Physically Interacts with and Is Activated by the Calcium-Binding Protein SOS3, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 3735–3740.

    Article  CAS  PubMed  Google Scholar 

  27. Mulet, J.M., Leube, M.P., Kron, S.J., et al., A Novel Mechanism of Ion Homeostasis and Salt Tolerance in Yeast: The Hal4 and Hal5 Protein Kinases Modulate the Trk1-Trk2 Potassium Transporter, Mol. Cell. Biol., 1999, vol. 19, pp. 3328–3337.

    CAS  PubMed  Google Scholar 

  28. Serrano, R. and Rodriguez-Navarro, A., Ion Homeostasis during Salt Stress in Plants, Curr. Opin. Cell Biol., 2001, vol. 13, pp. 399–404.

    CAS  PubMed  Google Scholar 

  29. Kaplan, A., Volokita, M., Zenvirth, D., and Reinhold, L., An Essential Role for Sodium in the Bicarbonate Transporting System of the Cyanobacterium Anabaena variabilis, FEBS Lett., 1984, vol. 176, pp. 166–168.

    Article  CAS  Google Scholar 

  30. Dimroth, P., Sodium Ion Transport Decarboxylases and Other Aspects of Sodium Ion Cycling in Bacteria, Microbiol. Rev., 1987, vol. 51, pp. 320–340.

    CAS  PubMed  Google Scholar 

  31. Espie, G.S., Miller, A.G., and Canvin, D.T., Characterization of the Na+-Requirement in Cyanobacterial Photosynthesis, Plant Physiol., 1988, vol. 88, pp. 757–763.

    CAS  Google Scholar 

  32. Padan, E. and Vitteboro, A., Cation Transport of Cyanobacteria, Methods in Enzymology, Packer, L. and Glazer, A., Eds., San Diego: Academic, 1988, pp. 561–571.

    Google Scholar 

  33. Fernandez, V.E. and Avendano, M.C., Sodium Stimulation of Phosphate Uptake in Cyanobacterium Anabaena PCC 7119, Plant Cell Physiol., 1993, vol. 34, pp. 201–207.

    Google Scholar 

  34. Thomas, S.P. and Apte, S.K., Sodium Requirement and Metabolism in Nitrogen-Fixing Cyanobacteria, J. Biosci., 1984, vol. 6, pp. 771–794.

    CAS  Google Scholar 

  35. Niu, X., Bressan, R.A., Hasegawa, P.M., and Pardo, J.M., Ion Homeostasis in NaCl Stress Environments, Plant Physiol., 1995, vol. 109, pp. 735–742.

    CAS  PubMed  Google Scholar 

  36. Serrano, R., Mulet, J.M., Rios, G., et al., A Glimpse of the Mechanisms of Ion Homeostasis during Salt Stress, J. Exp. Bot., 1999, vol. 50, pp. 1023–1036.

    Article  CAS  Google Scholar 

  37. Blumwald, E., Aharon, G., and Apse, M.P., Sodium Transport in Plant Cells, Biochim. Biophys. Acta, 2000, vol. 1465, pp. 140–151.

    CAS  PubMed  Google Scholar 

  38. Schachtman, D. and Liu, W., Molecular Pieces to the Puzzle of the Interaction between Potassium and Sodium Uptake in Plants, Trends Plant Sci., 1999, vol. 4, pp. 281–287.

    Article  PubMed  Google Scholar 

  39. Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., and Bohnert, H.J., Plant Cellular and Molecular Responses to High Salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 51, pp. 463–499.

    Google Scholar 

  40. Rubio, F., Schwarz, M., Gassmann, W., and Schroder, J.I., Genetic Selection of Mutations in the High Affinity K+ Transporter HKT1 That Functions of a Loop Site for Reduced Na+ Permeability and Increased Na+ Tolerance, J. Biol. Chem., 1999, vol. 274, pp. 6839–6847.

    Article  CAS  PubMed  Google Scholar 

  41. Inaba, M., Sakamoto, A., and Murata, N., Functional Expression in Escherichia coli of Low-Affinity and High-Affinity Na+(Li+)/H+ Antiporters of Synechocystis, J. Bacteriol., 2001, vol. 183, pp. 1376–1384.

    Article  CAS  PubMed  Google Scholar 

  42. Gabbay-Azaria, R. and Tel-Or, E., Mechanism of Salt Tolerance in Cyanobacteria, Plant Responses to the Environment, Gresshoff, P.M., Ed., Boca Raton, FL: CRC, 1993, pp. 123–132.

    Google Scholar 

  43. Joset, F., Jeanjean, R., and Hagemann, M., Dynamics of the Response of Cyanobacteria to Salt Stress: Deciphering the Molecular Events, Physiol. Plant., 1996, vol. 96, pp. 738–744.

    Article  CAS  Google Scholar 

  44. Padan, E., Venturi, M., Gerchman, Y., and Dover, N., Na+/H+ Antiporters, Biochem. Biophys. Acta, 2001, vol. 1505, pp. 144–157.

    CAS  PubMed  Google Scholar 

  45. Zhu, J.-K., Plant Salt Tolerance, Trends Plant Sci., 2001, vol. 6, pp. 66–71.

    CAS  PubMed  Google Scholar 

  46. Kaku, N., Hibino, T., Tanaka, Y., et al., Effects of Overexpression of Escherichia coli katE and bet Genes on the Tolerance for Salt Stress in a Freshwater Cyanobacterium Synechococcus sp. PCC 7942, Plant Sci., 2000, vol. 159, pp. 281–288.

    Article  CAS  PubMed  Google Scholar 

  47. Blumwald, E., Wolosin, J.M., and Packer, L., Na+/H+ Exchange in the Cyanobacterium Synechococcus 6311, Biochem. Biophys. Res. Commun., 1984, vol. 122, pp. 452–459.

    Article  CAS  PubMed  Google Scholar 

  48. Molitor, V., Erber, W., and Peschek, G.A., Increased Levels of Cytochrome-Oxidase and Sodium-Proton Antiporter in the Plasma Membrane of Anacystis nidulans after Growth in Sodium-Enriched Media, FEBS Lett., 1986, vol. 204, pp. 251–256.

    Article  CAS  Google Scholar 

  49. Alge, D. and Peschek, G.A., Characterization of a ictaCDE Operon-Like Genomic Region Encoding Subunits I–III of the Cyanobacterium Synechocystis PCC 6803, Biochem. Mol. Biol. Int., 1993, vol. 29, pp. 511–525.

    CAS  PubMed  Google Scholar 

  50. Krulwich, T.A., Na+/H+ Antiporters, Biochim. Biophys. Acta, 1983, vol. 726, pp. 245–264.

    CAS  PubMed  Google Scholar 

  51. Grinstein, S., Rotin, D., and Mason, M.J., Na+/H+ Exchange and Growth Factor-Induced Cytosolic pH Changes: Role in Cellular Proliferation, Biochem. Biophys. Acta, 1989, vol. 988, pp. 73–97.

    CAS  PubMed  Google Scholar 

  52. Wang, Z., Orlowski, J., and Shull, G.E., Primary Structure and Functional Expression of a Novel Gastrointestinal Isoform of the Rat Na+/H+ Exchanger, J. Biol. Chem., 1993, vol. 268, pp. 11 925–11 928.

    CAS  Google Scholar 

  53. Hamada, A., Hibino, T., Nakamura, T., and Takabe, T., Na+/H+ Antiporter from Synechocystis Species PCC 6803, Homologous to SOS1, Contains an Aspartic Residue and Long C-Terminal Tail Important for the Carrier Activity, Plant Physiol., 2001, vol. 125, pp. 437–446.

    Article  CAS  PubMed  Google Scholar 

  54. Dibrov, P.A., The Role of Sodium Ion Transport in Escherichia coli Energetics, Biochim. Biophys. Acta, 1991, vol. 1056, pp. 209–224.

    CAS  PubMed  Google Scholar 

  55. Utsugi, J., Inaba, K., Kuroda, T., et al., Cloning and Sequencing of a Novel Na+/H+ Antiporter Gene from Pseudomonas aeruginosa, Biochim. Biophys. Acta, 1998, vol. 1398, pp. 330–334.

    CAS  PubMed  Google Scholar 

  56. Wood, J.M., Osmosensing by Bacteria: Signals and Membrane-Based Sensors, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 230–262.

    CAS  PubMed  Google Scholar 

  57. Waditee, R., Hibino, T., Nakamura, T., et al., Overexpression of a Na+/H+ Antiporter Confers Salt Tolerance on a Freshwater Cyanobacterium, Making It Capable of Growth in Sea Water, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 4109–4114.

    Article  CAS  PubMed  Google Scholar 

  58. Nitschmann, W.H. and Packer, L., NMR Studies on Na+ Transport in Synechococcus PCC 6311, Arch. Biochem. Biophys., 1992, vol. 294, pp. 347–352.

    Article  CAS  Google Scholar 

  59. Kaneko, T., Sato, S., Kotani, H., et al., Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803: II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-Coding Regions, DNA Res., 1996, vol. 3, pp. 109–136.

    CAS  PubMed  Google Scholar 

  60. Elanskaya, I.V., Karandashova, I.V., Bogachev, A.V., and Khagemann, M., Functional Analysis of the Genes Coding for Na+/H+ Antiporters in Cyanobacterium Synechocystis sp. PCC 6803, Biokhimiya, 2002, vol. 67, pp. 432–440.

    CAS  Google Scholar 

  61. Mikkat, S., Milkowski, C., and Hagemann, M., A Putative Na+/H+ Antiporter Encoded by sll0273 of the Cyanobacterium Synechocystis sp. Strain PCC 6803 Is Essential for Growth at High Na+/K+ Ratios, Plant Cell Environ., 2000, vol. 23, pp. 549–559.

    Article  CAS  Google Scholar 

  62. Polarek, J.W., Williams, G., and Epstein, W., The Products of kdpDE Operon Are Required for Expression of the Kdp ATPase of the Escherichia coli, J. Bacteriol., 1992, vol. 174, pp. 2145–2151.

    CAS  PubMed  Google Scholar 

  63. Puppe, W., Zimmann, P., Jung, K., and Altendorf, K., Characterization of Truncated Forms of the KdpD Protein, the Sensor Kinase of the K+-Translocating Kdp System of the Escherichia coli, J. Biol. Chem., 1996, vol. 271, pp. 25 027–25 034.

    CAS  Google Scholar 

  64. Jung, K., Tjaden, B., and Altendorf, K., Purification, Reconstitution, and Characterization of KdpD, the Turgor Sensor of Escherichia coli, J. Biol. Chem., 1997, vol. 272, pp. 10 847–10 852.

    CAS  Google Scholar 

  65. Bossemeyer, D., Borchard, A., Dosch, D.C., et al., K+-Transport Protein TrkA of Escherichia coli Is a Peripheral Membrane Protein That Requires Other trk Gene Products for Attachment to the Cytoplasmic Membrane, J. Biol. Chem., 1989, vol. 264, pp. 16 403–16 410.

    CAS  Google Scholar 

  66. Nakamura, T., Matsuba, Y., Yamamuro, N., et al., Cloning and Sequencing of a K+ Transport Gene (trkA) from the Marine Bacterium Vibrio alginolyticus, Biochim. Biophys. Acta, 1994, vol. 1219, pp. 701–705.

    PubMed  Google Scholar 

  67. Schlosser, A., Meldorf, M., Stumpe, S., et al., TrkH and Its Homolog, TrkG, Determine the Specificity and Kinetics of Cation Transport by Trk System of Escherichia coli, J. Bacteriol., 1995, vol. 177, pp. 1908–1910.

    CAS  PubMed  Google Scholar 

  68. Nakamura, T., Yuda, R., Unemoto, T., and Bakker, E.P., KtrAB, a New Type of Bacterial K+-Uptake System from Vibrio alginolyticus, J. Bacteriol., 1998, vol. 180, pp. 3491–3494.

    CAS  PubMed  Google Scholar 

  69. Bakker, E.P. and Harold, F.M., Energy Coupling to Potassium Transport in Streptococcus faecalis, J. Biol. Chem., 1980, vol. 225, pp. 433–440.

    Google Scholar 

  70. Kakinuma, Y., Inorganic Cation Transport and Energy Transduction in Enterococcus hirae and Other Streptococci, Microbiol. Mol. Biol. Rev., 1998, vol. 62, pp. 1021–1042.

    CAS  PubMed  Google Scholar 

  71. Takase, K., Kakinuma, S., Ymato, I., et al., Sequencing and Characterization of the ntp Gene Cluster for Na+-Translocating ATPase in Enterococcus hirae, J. Biol. Chem., 1994, vol. 269, pp. 11 037–11 044.

    CAS  Google Scholar 

  72. Berry, S., Esper, A., Karandashova, I., et al., Potassium Uptake in the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6803 Mainly Depends on a Ktr-Like System Encoded by slr1509 (ntpJ), FEBS Lett., 2003, vol. 548, pp. 53–58.

    Article  CAS  PubMed  Google Scholar 

  73. Hagemann, M., Fulda, S., and Shubert, H., DNA, RNA and Protein Synthesis in the Cyanobacterium Synechocystis sp. PCC 6803 Adapted to Different Salt Concentrations, Curr. Microbiol., 1994, vol. 28, pp. 201–207.

    Article  CAS  Google Scholar 

  74. Fulda, S., Huang, F., Nilsson, F., et al., Proteomics of Synechocystis sp. Strain PCC 6803: Identification of Periplasmic Proteins in Cells Grown at Low and High Salt Concentrations, Eur. J. Biochem., 2000, vol. 267, pp. 5900–5907.

    Article  CAS  PubMed  Google Scholar 

  75. Apte, S.K. and Bhagwat, A., Salinity Stress-Induced Proteins in Two Nitrogen-Fixing Anabaena Strains Differentially to Salt, J. Bacteriol., 1989, vol. 171, pp. 909–915.

    CAS  PubMed  Google Scholar 

  76. Hagemann, M., Wolfel, L., and Kruger, B., Alterations of Protein Synthesis in the Cyanobacterium Synechocystis spec. PCC 6803 after a Salt Shock, J. Gen. Microbiol., 1990, vol. 136, pp. 1393–1399.

    CAS  Google Scholar 

  77. Hagemann, M., Golldack, D., Biggins, J., and Erdmann, N., Salt-Dependent Protein Phosphorylation in the Cyanobacterium Synechocystis PCC 6803, FEMS Microbiol. Lett., 1993, vol. 113, pp. 205–210.

    CAS  Google Scholar 

  78. Apte, S.K. and Haselkorn, R., Cloning of Salinity Stress-Induced Genes from the Salt-Tolerant Nitrogen-Fixing Cyanobacterium Anabaena torulosa, Plant Mol. Biol., 1990, vol. 15, pp. 723–733.

    Article  CAS  PubMed  Google Scholar 

  79. Fernandes, T.A., Iyer, V., and Apte, S.K., Differential Responses of Nitrogen-Fixing Cyanobacteria to Salinity and Osmotic Stresses, Appl. Environ. Microbiol., 1993, vol. 59, pp. 899–904.

    CAS  PubMed  Google Scholar 

  80. Kanesaki, Y., Suzuki, I., Allakhverdiev, S.I., et al., Salt Stress and Hyperosmotic Stress Regulate the Expression of Different Sets of Genes in Synechocystis sp. PCC 6803, Biochem. Biophis. Res. Commun., 2002, vol. 290, pp. 339–348.

    CAS  Google Scholar 

  81. Los, D.A. and Murata, N., Responses to Cold Shock in Cyanobacteria, J. Mol. Microbiol. Biotechnol., 1999, vol. 1, pp. 221–230.

    CAS  PubMed  Google Scholar 

  82. Shinagawa, H., SOS Response As an Adaptive Response to DNA Damage in Prokaryotes, EXS, 1996, vol. 77, pp. 221–235.

    CAS  PubMed  Google Scholar 

  83. Marin, K., Kanesaki, Y.U., Los, D.A., et al., Gene Expression Profiling Reflects Physiological Processes in Salt Acclimation of Synechocystis sp. Strain PCC 6803, Plant Physiol., 2004, vol. 136, pp. 3290–3300.

    Article  CAS  PubMed  Google Scholar 

  84. Mizuno, T. and Mizushima, S., Signal Transduction and Gene Regulation through the Phosphorylation of Two Regulatory Components: The Molecular Basis for the Osmotic Regulation of the Porin Genes, Mol. Microbiol., 1990, vol. 4, pp. 1077–1082.

    CAS  PubMed  Google Scholar 

  85. Kaneko, T., Nakamura, Y., Sasamoto, S., et al., Structural Analysis of Four Large Plasmids Harboring in a Unicellular Cyanobacterium Synechocystis sp. PCC 6803, DNA Res., 2003, vol. 10, pp. 221–228.

    CAS  PubMed  Google Scholar 

  86. Marin, K., Suzuku, I., Yamaguchi, K., et al., Identification of Histidine Kinases That Act As Sensors in the Perception of Salt Stress in Synechocystis sp. PCC 6803, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 9061–9066.

    CAS  PubMed  Google Scholar 

  87. Paithoonransarid, K., Shoumskaya, M.A., Kanesaki, Y., et al., Five Histidine Kinases Perceive Osmotic Stress and Regulate Distinct Sets of Genes in Synechocystis, J. Biol. Chem., 2004, vol. 279, pp. 53 078–53 086.

    Google Scholar 

  88. Blount, P. and Moe, P.C., Bacterial Mechanosensitive Channels: Integrating Physiology, Structure and Function, Trends Microbiol., 1999, vol. 7, pp. 420–424.

    Article  CAS  PubMed  Google Scholar 

  89. Lyukevich, A.A., Role of the MscL Mechanosensitive Channel in Sensing Stress Signals by Synechocystis Cells, Cand. Sci. (Biol.) Dissertation, Moscow: Inst. Plant Physiol., 2001.

    Google Scholar 

  90. Marsalek, B., Zahradnickova, H., and Hronkova, M., Extracellular Abscisic Acid Produced by Cyanobacteria under Salt Stress, Plant Physiol., 1992, vol. 139, pp. 506–508.

    CAS  Google Scholar 

  91. Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., et al., NaCl-Induced Inactivation of Photosystems I and II in Synechococcus sp., Plant Physiol., 2000, vol. 123, pp. 1047–1056.

    Article  CAS  PubMed  Google Scholar 

  92. Sinha, R.P. and Hader, D.-P., Response of a Rice Field Cyanobacterium Anabaena sp. to Physiological Stressors, Environ. Exp. Bot., 1996, vol. 36, pp. 147–155.

    Article  CAS  Google Scholar 

  93. Schubert, H., Fulda, S., and Hagemann, M., Effects of Adaptation to Different Salt Concentrations on Photosynthesis and Pigmentation of the Cyanobacterium Synechocystis sp. PCC 6803, J. Plant Physiol., 1993, vol. 142, pp. 291–295.

    CAS  Google Scholar 

  94. Lu, C. and Vonshak, A., Effects of Salinity Stress on Photosystem II Function in Cyanobacterium Spirulina platensis, Physiol. Plant., 2002, vol. 114, pp. 405–413.

    Article  CAS  PubMed  Google Scholar 

  95. Allakhverdiev, S.I., Sakamoto, A., Nishiyama, Y., and Murata, N., Inactivation of Photosystems I and II in Response to Osmotic Stress in Synechococcus: Contribution of Water Channels, Plant Physiol., 2000, vol. 122, pp. 1201–1208.

    Article  CAS  PubMed  Google Scholar 

  96. Schubert, H. and Hagemann, M., Salt Effect on 77 K Fluorescence and Photosynthesis in the Cyanobacterium Synechocystis sp. PCC 6803, FEMS Microbiol. Lett., 1990, vol. 71, pp. 169–172.

    Article  CAS  Google Scholar 

  97. Jeanjean, R., Matthijs, H.C.P., Onana, B., et al., Exposure of the Cyanobacterium Synechocystis sp. PCC 6803 to Salt Stress Induced Concerted Changes in Respiration and Photosynthesis, Plant Cell Physiol., 1993, vol. 34, pp. 1073–1079.

    CAS  Google Scholar 

  98. Jeanjean, R., Bedu, S., Havaux, M., et al., Salt-Induced Photosystem I Cyclic Electron Transfer Restores Growth on Low Inorganic Carbon in a Type 1 NAD(P)H Dehydrogenase-Deficient Mutant of Synechocystis PCC 6803, FEMS Microbiol. Lett., 1998, vol. 167, pp. 131–137.

    CAS  Google Scholar 

  99. Van Thor, J.J., Gruters, O.W., Matthijs, H.C.P., and Hellingwerf, K.J., Localization and Function of Ferredoxin: NADP(+) Reductase Bound to the Phycobilisomes of Synechocystis, EMBO J., 1999, vol. 18, pp. 4128–4136.

    PubMed  Google Scholar 

  100. Van Thor, J.J., Hellingwerf, K.J., and Matthijs, H.C.P., Characterization and Transcriptional Regulation of the Synechocystis PCC 6803 petH Gene, Encoding Ferredoxin-NADP+ Oxidoreductase: Involvement of a Novel Type of Divergent Operator, Plant. Mol. Biol., 1998, vol. 36, pp. 353–363.

    PubMed  Google Scholar 

  101. Van Thor, J.J., Jeanjean, R., Havaux, M., et al., Salt Shock-Inducible Photosystem I Cyclic Electron Transfer in Synechocystis PCC 6803 Relies on Binding of Ferredoxin: NADP(+) Reductase to the Thylakoid Membranes via Its CpcD Phycobilisome-Linker Homologous N-Terminal Domain, Biochim. Biophys. Acta, 2000, vol. 1457, no.3, pp. 129–144.

    PubMed  Google Scholar 

  102. Allakhverdiev, S.I., Nishiyama, Y., Miyairi, S., et al., Salt Stress Inhibits the Repair of Photodamaged Photosystem II by Suppressing the Transcription and Translation of psbA Genes in Synechocystis, Plant Physiol., 2002, vol. 130, pp. 1443–1453.

    Article  CAS  PubMed  Google Scholar 

  103. Blumwald, E., Melhorn, R., and Packer, L., Ionic Osmoregulation during Salt Adaptation of the Cyanobacterium Synechocystis 6311, Plant Physiol., 1983, vol. 73, pp. 377–380.

    CAS  Google Scholar 

  104. Molitor, V., Kunter, O., Sleytr, U.B., and Peschek, G.A., The Ultrastructure of Plasma and Thylacoid Membrane Vesicles from the Fresh Water Cyanobacterium Anacystis nidulans Adapted to Salinity, Protoplasma, 1990, vol. 157, pp. 112–119.

    Article  Google Scholar 

  105. Allakhverdiev, S.I., Kinoshita, M., Inaba, M., et al., Unsaturated Fatty Acids in Membrane Lipids Protect the Photosynthetic Machinery against Salt-Induced Damage in Synechococcus, Plant Physiol., 2001, vol. 125, pp. 1842–1853.

    Article  CAS  PubMed  Google Scholar 

  106. Shapiguzov, A., Lyukevich, A.A., Allakhverdiev, S.I., et al., Osmotic Shrinkage of Cells of Synechocystis sp. PCC 6803 by Water Efflux via Aquaporins Regulates Osmostress-Inducible Gene Expression, Microbiology, 2005, vol. 151, pp. 447–455.

    Article  CAS  PubMed  Google Scholar 

  107. Karandashova, I., Elanskaya, I., Marin, K., et al., Identification of Genes Essential for Growth at High Salt Concentrations Using Salt-Sensitive Mutants of the Cyanobacterium Synechocystis sp. Strain PCC 6803, Curr. Microbiol., 2002, vol. 44, pp. 184–188.

    Article  CAS  PubMed  Google Scholar 

  108. Reed, R.H., Warr, S.R.C., Richardson, D.L., et al., Multiphasic Osmotic Adjustment in a Euryhaline Cyanobacterium, FEMS Microbiol. Lett., 1985, vol. 28, pp. 225–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 12, 2005, pp. 1589–1600.

Original Russian Text Copyright © 2005 by Karandashova, Elanskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karandashova, I.V., Elanskaya, I.V. Genetic Control and Mechanisms of Salt and Hyperosmotic Stress Resistance in Cyanobacteria. Russ J Genet 41, 1311–1321 (2005). https://doi.org/10.1007/s11177-006-0001-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-006-0001-z

Keywords

Navigation