Skip to main content
Log in

Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The estimation of biogas production from organic monomers is very important for the optimal design, configuration, and efficient evaluation of the anaerobic digestion processes in a digester. The theoretical estimation of the biogas potential that is most used is that of Buswell and Boyle. In this work, we found that this estimate was much exaggerated compared to the real biogas potential determined in practice. For monosaccharides, we noted that the biogas potential of glucose was very low compared to that of fructose, even though the two substrates have the same chemical composition and molecular mass. The same result was observed for the disaccharides lactose and maltose. The amino acid valine produced more biogas than the amino acid cysteine did. The experimental potential remained lower than the calculated potential. An important difference existed between the experimental biogas potential of the six monomers investigated and the theoretical biogas potential. This indicated that the calculation of the biogas potential by the stereochemical equation of Buswell and Boyle was overstated and did not take into consideration the isometric form, spatial configuration, and intermediate metabolite produced by the monosaccharides in the four steps of anaerobic digestion. For the disaccharides, the theoretical calculations did not take into account the nature of the molecular components in carbohydrate, type of glycosidic bond, and intermediate metabolites of substrates for anaerobic digestion. Finally, for the amino acids, it does not take into account the ramification of the atomic components and the chemical nature of atoms in amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Afilal ME, Elasri O, Merzak Z (2014) Caractérisations des déchets organiques et évaluation du potentiel Biogaz (Organic waste characterization and evaluation of its potential biogas). J Mater Environ Sci 5(4):1160–1169

    CAS  Google Scholar 

  • Ahring BK, Westerman P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl Environ Microbiol 54(10):2393–2397

    CAS  Google Scholar 

  • Amani T, Nosrati M, Mousavi SM, Kermanshahi RK (2011) Study of syntrophic anaerobic digestion of volatile fatty acids using enriched cultures at mesophilic conditions. Int J Environ Sci Technol 8:83–96. doi:10.1007/BF03326198

    Article  CAS  Google Scholar 

  • Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genus clostridium. In: Minton NP, Clarke DJ (eds) Clostridia. Springer, Boston, pp 27–62

    Chapter  Google Scholar 

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol. doi:10.1007/BF00242955

    Article  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the anaerobic digestion process. In: Ahring BK, Ahring BK, Angelidaki I, Dolfing J, EUegaard L, Gavala HN, Haagensen F, Mogensen AS, Lyberatos G, Pind PF, Schmidt JE, Skiadas IV, Stamatelatou K (eds) Biomethanation II. Springer, Berlin, pp 1–33

    Google Scholar 

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. In: Rosenzweig A, Ragsdale S (eds) Methods in enzymology. Elsevier, USA, pp 327–351

  • Angyal SJ (1991) The composition of reducing sugars in solution: current aspects. Advances in carbohydrate chemistry and biochemistry. Adv Carbohydr Chem Biochem 49:19–35. doi:10.1016/S0065-2318(08)60180-8

  • Banks CJ, Zotova EA, Heaven S (2010) Biphasic production of hydrogen and methane from waste lactose in cyclic-batch reactors. J Clean Prod 18:S95–S104. doi:10.1016/j.jclepro.2010.04.018

    Article  CAS  Google Scholar 

  • Barker HA (1981) Amino acid degradation by anaerobic bacteria. Annu Rev Biochem 50:23–40. doi:10.1146/annurev.bi.50.070181.000323

    Article  CAS  Google Scholar 

  • Boyle WC (1977) Energy recovery from sanitary landfills—a review. In: Schlegel HG, Barnea S (eds) Microbial energy conversion. Elsevier, USA, pp 119–138

  • Brito PSD (2013) Review of cheese whey recovery technologies. In: Culleri JC (ed) Recycling: technological systems, management practices and environmental impact. Nova Publishers, Inc, New York, pp 114–144

    Google Scholar 

  • Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552. doi:10.1021/ie50507a033

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. doi:10.1016/j.biortech.2007.01.057

    Article  CAS  Google Scholar 

  • Conn EE, Stumpf PK, Bruening G, Doi RH (1987) Outlines of biochemistry. Wiley, New York

    Google Scholar 

  • Costello DJ, Greenfield PF, Lee PL (1991) Dynamic modelling of a single stage high-rate anaerobic reactor. Model derivation. Water Resour 25:847–858

    CAS  Google Scholar 

  • Dohanyos M, Zabranska J, Jenicek P (1997) Enhancement of sludge anaerobic digestion by using of a special thickening centrifuge. Water Sci Technol 36:145–153. doi:10.1016/S0273-1223(97)00677-X

    Article  CAS  Google Scholar 

  • El Asri O, Hafidi I, Afilal ME (2015a) Comparison of biogas purification by different substrates and construction of a biogas purification system. Waste Biomass Valoriz 6:459–464. doi:10.1007/s12649-015-9378-z

    Article  CAS  Google Scholar 

  • El Asri O, Mahaouch M, Afilal ME (2015b) The evaluation and the development of three devices for measurement of biogas production. Phys Chem News 75:75–85

    Google Scholar 

  • Hippe H, Andreesen JR, Gottschalk G (1992) The genus Clostridium—nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 1800–1866

    Google Scholar 

  • Hulshoff Pol LW, Lens PN, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224. doi:10.1023/A:1008307929134

    Article  CAS  Google Scholar 

  • Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154. doi:10.1016/j.rser.2015.07.091

    Article  Google Scholar 

  • Jasko J, Skripsts E, Dubrovskis V, Zabarovskis E, Kotelenecs V (2011) Biogas production from cheese whey in two phase anaerobic digestion. In: Engineering for rural development. Presented at the proceeding of 10th international scientific conference, Jelgava, Latvia, pp 373–376

  • Kalyuzhnyi SV (1997) Batch anaerobic digestion of glucose and its mathematical modeling. II. Description, verification and application of model. Bioresour Technol 59:249–258. doi:10.1016/S0960-8524(96)00125-3

    Article  CAS  Google Scholar 

  • Kalyuzhnyi SV, Davlyatshina MA (1997) Batch anaerobic digestion of glucose and its mathematical modeling. I. Kinetic investigations. Bioresour Technol 59:73–80. doi:10.1016/S0960-8524(96)00124-1

    Article  CAS  Google Scholar 

  • Kleinstreuer C, Poweigha T (1982) Dynamic simulator for anaerobic digestion processes. Biotechnol Bioeng 24:1941–1951. doi:10.1002/bit.260240903

    Article  CAS  Google Scholar 

  • Lyberatos G, Skiadas IV (1999) Modelling of anaerobic digestion—a review. Glob NEST J 1:63–76

    Google Scholar 

  • Moletta R, Verrier D, Albagnac G (1986) Dynamic modelling of anaerobic digestion. Water Res 20:427–434. doi:10.1016/0043-1354(86)90189-2

    Article  CAS  Google Scholar 

  • Mosey FE (1983) Mathematical modeling of anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15:209–217

    Article  CAS  Google Scholar 

  • Nuchdang S, Phalakornkule C (2012) Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure. J Environ Manag 101:164–172. doi:10.1016/j.jenvman.2012.01.031

    Article  CAS  Google Scholar 

  • Orlygsson J, Houwen FP, Svensson BH (1995) Thermophilic anaerobic amino acid degradation: deamination rates and end-product formation. Appl Microbiol Biotechnol 43:235–241. doi:10.1007/BF00172818

    Article  Google Scholar 

  • Park J, Park S, Kim M (2014) Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge. Environ Technol 35:1133–1139. doi:10.1080/09593330.2013.863951

    Article  CAS  Google Scholar 

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257. doi:10.1023/A:1013116728817

    Article  CAS  Google Scholar 

  • Robyt JF (1998) Transformations. In: Cantor CR (ed) Essentials of carbohydrate chemistry. Springer, New York, pp 48–75

  • Tufaner F, Avşar Y (2016) Effects of co-substrate on biogas production from cattle manure: a review. Int J Environ Sci Technol 13:2303–2312. doi:10.1007/s13762-016-1069-1

    Article  CAS  Google Scholar 

  • van Leeuwen RP, Fink J, de Wit JB, Smit GJ (2015) Upscaling a district heating system based on biogas cogeneration and heat pumps. Energy Sustain Soc. doi:10.1186/s13705-015-0044-x

    Article  Google Scholar 

  • Weimer PJ, Zeikus JG (1977) Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum. Appl Environ Microbiol 33:289–297

    CAS  Google Scholar 

  • Winter J, Wolfe RS (1979) Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch Microbiol 121:97–102. doi:10.1007/BF00409211

    Article  CAS  Google Scholar 

  • Wittmann C, Zeng A-P, Deckwer W-D (1995) Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of Mycobacterium chlorophenolicum. Appl Microbiol Biotechnol 44:519–525. doi:10.1007/BF00169954

    Article  CAS  Google Scholar 

  • Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. doi:10.1016/j.procbio.2013.04.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We deeply thank Mrs. I. Yousfi for their technical support to produce this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. El Asri.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Asri, O., Afilal, M.E. Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids. Int. J. Environ. Sci. Technol. 15, 1957–1966 (2018). https://doi.org/10.1007/s13762-017-1570-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1570-1

Keywords

Navigation