Skip to main content
Log in

Application of magnetic adsorbent with silicate and phenyl polymers to adsorb Rhodamine B

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The extensive use of Rhodamine B (RhB) for textile, paper, pigment, food, cosmetic, and drug manufacturing and its indiscriminate disposal leads to serious human, biological, and environmental hazards. A magnetic adsorbent with silicate and phenyl polymers (Ph/SiO2/Fe3O4) has been prepared to absorb RhB. The morphology and structure of the adsorbents have been characterized by TGA, XRD, FTIR, and adsorption–desorption measurement. The results revealed that Ph/SiO2/Fe3O4 exhibited a paramagnetic behavior and could easily and quickly be separated from a suspension. The RhB adsorption behavior was almost pH independent due to the adsorption between the phenyl ring of Ph/SiO2/Fe3O4 and RhB by π–π electron-donor–acceptor interactions. The adsorption behavior of RhB adsorption was in good agreement with the Langmuir adsorption isotherm, and the maximum adsorption capacity was 142.186 mg g−1. Good desorption performance of Ph/SiO2/Fe3O4 showed that this novel magnetic adsorbent cannot only be activated by ethanol extraction process but also reuse by the recovery of magnetic force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albornoz C, Sileo EE, Jacobo SE (2004) Magnetic polymers of maghemite (g-Fe2O3) and polyvinyl alcohol. Phys B 354:149–153

    Article  CAS  Google Scholar 

  • Aprea P, Caputo D, Gargiulo N, Iucolano F, Pepe F (2010) Modeling carbon dioxide adsorption on microporous substrates: comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J Chem Eng Data 55:3655–3661

    Article  CAS  Google Scholar 

  • Ariga K, Vinu A, Yamauchi Y, Ji Q, Hill JP (2012) Nanoarchitectonics for mesoporous materials. Desalination 85:1–32

    CAS  Google Scholar 

  • Chou CS, Yang RY, Weng MH, Yeh CH (2008) Preparation of TiO2/dye composite particles and their applications in dye-sensitized solar cell. Powder Technol 187:181–189

    Article  CAS  Google Scholar 

  • Ciesielczyk F, Bartczak P, Jesionowski T (2015) A comprehensive study of Cd(II) ions removal utilizing high-surface-area binary Mg–Si hybrid oxide adsorbent. Int J Environ Sci Technol 12:3613–3626

    Article  CAS  Google Scholar 

  • Dire DJ, Wilkinson JA (1987) Acute exposure to rhodamine B. J Toxicol Clin Toxicol 25:603–607

    Article  CAS  Google Scholar 

  • Guo RX, Guo J, Yu FQ, Gang DD (2013) Synthesis and surface functional group modifications of ordered mesoporous carbons for resorcinol removal. Microporous Mesoporous Mater 175:141–146

    Article  CAS  Google Scholar 

  • Hong RY, Feng B, Liu G, Wang S, Li HZ, Ding JM, Zheng Y, Wei DG (2009) Preparation and characterization of Fe3O4/polystyrene composite particles via inverse emulsion polymerization. J Alloy Compd 476:612–618

    Article  CAS  Google Scholar 

  • Iler RK (1979) The chemistry of silica. Wiley, New York

    Google Scholar 

  • Jin Z, Wang X, Sun Y, Ai Y, Wang X (2015) Adsorption of 4-n-nonylphenol and bisphenol-A on magnetic reduced graphene oxides: a combined experimental and theoretical studies. Environ Sci Technol 49:9168–9175

    Article  CAS  Google Scholar 

  • Kaji T, Kawashima T, Sakamoto M (1991) Rhodamine B inhibition of glycosaminoglycan production by cultured human lip fibroblasts. Toxicol Appl Pharmacol 111:82–89

    Article  CAS  Google Scholar 

  • Kaji T, Kawashima T, Yamamoto C, Sakamoto M (1992) Rhodamine B inhibition of glycosaminoglycan production by cultured human lip fibroblasts. Toxicol Lett 61:81–87

    Article  CAS  Google Scholar 

  • Koner S, Pal A, Adak A (2011) Utilization of silica gel waste for adsorption of cationic surfactant and adsolubilization of organics from textile wastewater: a case study. Desalination 276:142–147

    Article  CAS  Google Scholar 

  • Mellah A, Chegrouche S, Barkat M (2006) The removal of uranium (VI) from aqueous solutions onto activated carbon: kinetic and thermodynamic investigations. J Colloid Interface Sci 296:434–441

    Article  CAS  Google Scholar 

  • Nagaraja R, Kottam N, Girija CR, Nagabhushana BM (2012) Photocatalytic degradation of Rhodamine B dye under UV/solar light using ZnO nanopowder synthesized by solution combustion route. Powder Technol 215–216:91–97

    Article  CAS  Google Scholar 

  • Naiya TK, Bhattacharya AK, Das SK (2009) Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J Colloid Interface Sci 333:14–26

    Article  CAS  Google Scholar 

  • Nowicki P, Kazmierczak J, Sawicka K, Pietrzak R (2015) Nitrogen-enriched activated carbons prepared by the activation of coniferous tree sawdust and their application in the removal of nitrogen dioxide. Int J Environ Sci Technol 12:2233–2244

    Article  CAS  Google Scholar 

  • Pang Y, Zeng GM, Tang L, Zhang Y, Liu YY, Lei XX, Li Z, Zhang JC, Xie GX (2011) PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination 281:278–284

    Article  CAS  Google Scholar 

  • Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167

    Article  CAS  Google Scholar 

  • Peng XM, Hu XJ, Fu DF, Lam FLY (2014) Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon. Appl Surf Sci 168:71–80

    Article  CAS  Google Scholar 

  • Phan NTS, Jones CW (2006) Highly accessible catalytic sites on recyclable organosilane-functionalized magnetic nanoparticles: an alternative to functionalized porous silica catalysts. J Mol Catal A Chem 253:123–131

    Article  CAS  Google Scholar 

  • Pourreza N, Rastegarzadeh S, Larki A (2008) Micelle-mediated cloud point extraction and spectrophotometric determination of rhodamine B using Triton X-100. Talanta 77:733–736

    Article  CAS  Google Scholar 

  • Qin Y, Long M, Tan B, Zhou B (2014) RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a Fenton-like reaction. Nano Micro Lett 6:125–135

    Article  CAS  Google Scholar 

  • Reddad Z, Gerente C, Andres Y, Cloirec PL (2002) Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073

    Article  CAS  Google Scholar 

  • Rodrigues LA, da Silva MLCP, Alvarez-Mendes MO, Coutinho AD, Thim GP (2011) Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem Eng J 174:49–57

    Article  CAS  Google Scholar 

  • Shi YL, Qiu W, Zheng Y (2006) Synthesis and characterization of a POM-based nanocomposite as a novel magnetic photocatalyst. J Phys Chem Solids 67:2409–2418

    Article  CAS  Google Scholar 

  • Sparks DL (1989) Kinetics of soil chemical processes. Academic Press, San Diego

    Google Scholar 

  • Tanthapanichakoon W, Ariyadejwanich P, Japthong P, Nakagawa K, Mukai SR, Tamon H (2005) Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water Res 39:1347–1353

    Article  CAS  Google Scholar 

  • Vestal CR, Zhang ZJ (2002) Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4/polystyrene core/shell nanoparticles. J Am Chem Soc 124:14312–14313

    Article  CAS  Google Scholar 

  • Vinu A, Hossian KZ, Srinivasu P, Miyahara M, Anandan S, Gokulakrishnan N (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J Mater Chem 17:1819–1825

    Article  CAS  Google Scholar 

  • Wang CC, Masi AN, Fernández L (2008) On-line micellar-enhanced spectrofluorimetric determination of rhodamine dye in cosmetics. Talanta 75:135–140

    CAS  Google Scholar 

  • Webb JM, Hansen WH, Desmond A, Fitzhugh OG (1961) Biochemical and toxicologic studies of Rhodamine B and 3,6-Diaminofluoran. Toxicol Appl Pharmacol 3:696–706

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung WH, Mckay G (2003) Equilibrium studies for acid dye adsorption onto chitosan. Langmuir 19:7888–7894

    Article  CAS  Google Scholar 

  • Xue Y, Hou H, Zhu S (2009) Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag. J Hazard Mater 162:973–980

    Article  CAS  Google Scholar 

  • Yang GD, Tang L, Lei XX, Zeng GM, Cai Y, Wei X, Zhou YY, Li SS, Fang Y, Zhang Y (2014) Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan. Appl Surf Sci 292:710–716

    Article  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grant MOST 105-2622-E-562-002-CC3 from the Ministry of Science and Technology, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-W. Chen.

Additional information

Editorial responsibility: Hari Pant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiou, CS., Chen, HW. & Chen, ZT. Application of magnetic adsorbent with silicate and phenyl polymers to adsorb Rhodamine B. Int. J. Environ. Sci. Technol. 15, 1879–1886 (2018). https://doi.org/10.1007/s13762-017-1553-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1553-2

Keywords

Navigation