Skip to main content
Log in

Rhodium nanoparticles supported on 2-(aminomethyl)phenols-modified Fe3O4 spheres as a magnetically recoverable catalyst for reduction of nitroarenes and the degradation of dyes in water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A magnetic nanostructured catalyst (Fe3O4@SiO2-Amp-Rh) modified with 2-(aminomethyl)phenols (Amp) was designed and prepared, which is used to catalyze the reduction of aromatic nitro compounds into corresponding amines and the degradation of dyes. The 2-aminomethylphenol motif plays a vital role in the immobilization of rhodium nanoparticles to offer extraordinary stability, which has been characterized by using various techniques, including transmission electron microscopy (TEM), thermal gravimetric analyzer (TGA), X-Ray Diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). A variety of nitroaromatic derivatives have been reduced to the corresponding anilines in water with up to yields of 99% within 1 h at room temperature. In addition, the catalyst system is effective in catalyzing the reduction of toxic pollutant 4-nitrophenol and the degradation of MO, MB and RhB dyes. Importantly, this catalyst Fe3O4@SiO2-Amp-Rh can be easily recovered by an external magnetic field because of the presence of magnetic core of Fe3O4, and the activity of Fe3O4@SiO2-Amp-Rh does not decrease significantly after 7 times’ recycling, which indicates that the catalyst performed high reactivity as well as stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Farooqi ZH, Naseem K, Ijaz A, Begum R (2016) J Polym Eng 36:87

    Article  CAS  Google Scholar 

  2. Begum R, Naseem K, Ahmed E, Sharif A, Farooqi ZH (2016) Colloid Surf A-Physicochem Eng Asp 511:17

    Article  CAS  Google Scholar 

  3. Layek K, Kantam ML, Shirai M, Nishio-Hamane D, Sasaki T, Maheswaran H (2012) Green Chem 14:3164

    Article  CAS  Google Scholar 

  4. Lauwiner M, Rys P, Wissmann J (1998) Appl Catal A-Gen 172:141

    Article  CAS  Google Scholar 

  5. Ayad MM, Amer WA, Kotp MG (2017) Mol Catal 439:72

    Article  CAS  Google Scholar 

  6. Westerhaus FA, Jagadeesh RV, Wienhöfer G, Pohl MM, Radnik J, Surkus AE, Beller M (2013) Nat Chem 5:537

    Article  CAS  PubMed  Google Scholar 

  7. Wang L, Guan E, Zhang J, Yang J, Zhu Y, Han Y, Xiao FS (2018) Nat Commun 9:1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wei H, Liu X, Wang A, Zhang L, Qiao B, Yang X, Zhang T (2014) Nat Commun 5:5634

    Article  CAS  PubMed  Google Scholar 

  9. Datta KJ, Rathi AK, Kumar P, Kaslik J, Medrik I, Ranc V, Gawande MB (2017) Sci Rep 7:11585

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang D, Astruc D (2018) Chem Rev 115:6621

    Article  Google Scholar 

  11. Shokouhimehr M, Nasrollahzadeh M (2019) Appl Sci 9:4183

    Article  CAS  Google Scholar 

  12. Zhou J, Li Y, Sun H, Tang Z, Qi L, Liu L, Liang Q (2017) Green Chem 19:3400

    Article  CAS  Google Scholar 

  13. Byun S, Song Y, Kim BM (2016) ACS Appl Mater Interfaces 8:14637

    Article  CAS  PubMed  Google Scholar 

  14. Lou XB, He L, Qian L, Liu YM, Cao Y, Fan KN (2011) Adv Synth Catal 353:281

    Article  CAS  Google Scholar 

  15. Porwal D, Oestreich M (2016) Eur J Org Chem 2016:3307

    Article  CAS  Google Scholar 

  16. Zhang X, Shang N, Zhou X, Feng C, Gao S, Wu Q, Wang C (2017) New J Chem 41:3443

    Article  CAS  Google Scholar 

  17. Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Chem Mat 19:1062

    Article  CAS  Google Scholar 

  18. Junge K, Schröder K, Beller M (2011) Chem Commun 47:4849

    Article  CAS  Google Scholar 

  19. Jia WG, Zhang H, Zhang T, Xie D, Ling S, Sheng EH (2016) Organometallics 35:503

    Article  CAS  Google Scholar 

  20. Copéret C, Basset JM (2007) Adv Synth Catal 349:78

    Article  Google Scholar 

  21. Baran T (2020) Carbohydr Polym 237:116105

    Article  CAS  PubMed  Google Scholar 

  22. Trindade AF, Gois PMP, Afonso CAM (2009) Chem Rev 109:418

    Article  CAS  PubMed  Google Scholar 

  23. Karimi B, Mansouri F, Mirzaei HM (2015) ChemCatChem 7:1736

    Article  CAS  Google Scholar 

  24. Appaturi JN, Johan MR, Ramalingam RJ, Al-Lohedan HA (2018) Microporous Mesoporous Mat 256:67

    Article  CAS  Google Scholar 

  25. Kalidindi SB, Jagirdar BR (2011) Chemsuschem 5:65

    Article  PubMed  Google Scholar 

  26. Yuan X, Wang Z, Zhang Q, Luo J (2019) RSC Adv 9:23614

    Article  CAS  Google Scholar 

  27. Deng YH, Wang CC, Hu JH, Yang WL, Fu SK (2005) Colloid Surf A-Physicochem Eng Asp 262:87

    Article  CAS  Google Scholar 

  28. Cardellicchio C, Ciccarella G, Naso F, Perna F, Tortorella P (1999) Tetrahedron 55:14685

    Article  CAS  Google Scholar 

  29. Wen H, Yao K, Zhang Y, Zhou Z, Kirschning A (2009) Catal Commun 10:1207

    Article  CAS  Google Scholar 

  30. Rai RK, Mahata A, Mukhopadhyay S, Gupta S, Li PZ, Nguyen KT, Singh SK (2014) Inorg Chem 53:2904

    Article  CAS  PubMed  Google Scholar 

  31. Sun H, Ai Y, Li D, Tang Z, Shao Z, Liang Q (2017) Chem Eng J 314:328

    Article  CAS  Google Scholar 

  32. Gkizis PL, Stratakis M, Lykakis IN (2013) Catal Commun 36:48

    Article  CAS  Google Scholar 

  33. Guha NR, Bhattacherjee D, Das P (2014) Tetrahedron Lett 55:2912

    Article  CAS  Google Scholar 

  34. Hu J, Ding Y, Zhang H, Wu P, Li X (2016) RSC Adv 6:3235

    Article  CAS  Google Scholar 

  35. Feng J, Handa S, Gallou F, Lipshutz BH (2016) Angew Chem Int Edit 55:8979

    Article  CAS  Google Scholar 

  36. Ganji S, Enumula SS, Marella RK, Rao KSR, Burri DR (2014) Catal Sci Technol 4:1813

    Article  CAS  Google Scholar 

  37. Begum R, Farooqi ZH, Aboo AH, Ahmed E, Sharif A, Xiao J (2019) J Hazard Mater 377:399

    Article  CAS  PubMed  Google Scholar 

  38. Wang GS, Ding ZQ, Meng LX, Yan GY, Chen ZP, Hu JS (2020) Appl Organomet Chem 34:e5907

    CAS  Google Scholar 

  39. Ghasemzadeh MA, Abdollahi-Basir MH, Babaei M (2015) Green Che Lett Rev 8:40

    Article  Google Scholar 

  40. Yuan Q, Chi Y, Yu N, Zhao Y, Yan W, Li X, Dong B (2014) Mater Res Bull 49:279

    Article  CAS  Google Scholar 

  41. Rafiee F, Mehdizadeh N (2018) Catal Lett 148:1345

    Article  CAS  Google Scholar 

  42. Arghan M, Koukabi N, Kolvari E (2018) Appl Organometal Chem. 32:e4346

    Article  Google Scholar 

  43. Ojeda M, Rojas S, Boutonnet M, Perez-Alonso FJ, Garcia-Garcia FJ, Fierro JLG (2004) Appl Catal A-Gen 274:33

    Article  CAS  Google Scholar 

  44. Romanazzi G, Fiorea AM, Mali M, Rizzuti A, Leonelli C, Nacci A, Mastrorilli P, Dell’Annaa MM (2021) Mol Cata 499:31

    Google Scholar 

  45. Ramtenki V, Anumon V, Badiger MV, Prasad B (2012) Colloid Surf A Physicochem Eng Asp 414:296

    Article  CAS  Google Scholar 

  46. Junejo Y, Karaoglu E, Baykal A (2013) J Inorg Organomet P 23:970

    Article  CAS  Google Scholar 

  47. Qin L, Zeng Z, Zeng G, Lai C, Duan A, Xiao A, Huang D, Fu Y, Yi H, Li B (2019) Appl Catal B Environ 259:118035

    Article  CAS  Google Scholar 

  48. Umamaheswari C, Lakshmanan A, Nagarajan NS (2018) J Photoch Photobio B B 178:33

    Article  CAS  Google Scholar 

  49. Sargin I, Baran T, Arslan G (2020) Sep Purif Technol 247:116987

    Article  CAS  Google Scholar 

  50. Shi W, Lv H, Yuan S, Huang H, Liu Y, Kang Z (2017) Sep Purif Technol 174:282

    Article  CAS  Google Scholar 

  51. Issaabadi Z, Nasrollahzadeh M, Sajadi SM (2017) J Clean Prod 142:3584

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21702026, 21861040), Fundamental Research Funds for the Central Universities (N2005004, N2105005), and Scientific Research Fund project of Ningde Normal University (2020Z02, 2018Y06, 2018T02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aikebaier Reheman or Jianshe Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Chen, Z., Chen, T. et al. Rhodium nanoparticles supported on 2-(aminomethyl)phenols-modified Fe3O4 spheres as a magnetically recoverable catalyst for reduction of nitroarenes and the degradation of dyes in water. Catal Lett 152, 1076–1085 (2022). https://doi.org/10.1007/s10562-021-03688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03688-4

Keywords

Navigation