Skip to main content
Log in

Competitive interference during the biodegradation of cresols

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Phenol and its methylated derivatives, cresol isomers, are hazardous pollutants that are commonly present in various industrial effluents and known to have detrimental effect on aquatic life as well as human health, due to their toxic and carcinogenic nature. It is essential, therefore, to reduce the concentration of these contaminants in industrial effluent to acceptable levels prior to being discharged into the environment. Bacterial cells of the strain Pseudomonas putida, with excellent biodegradation capabilities and high tolerance of cresols, were extracted and immobilized in polyvinyl alcohol (PVA) gel for cresols biodegradation. The biodegradation was carried out at different operating conditions, in both batch and continuous modes, using a cylindrical spouted bed bioreactor. Factors affecting o-cresol and m-cresol degradation were studied in batch experiments, and the results showed that the immobilized bacteria could tolerate cresols concentration up to 200 mg/l. Moreover, the experiments indicated that the biodegradation rate was highly affected by the operating parameters such as pH and temperature, with optimum ranges of 6–8 for pH and 30–35 °C for temperature. However, the optimum conditions were different for each cresol isomer. The potential of P. putida in degrading binary and ternary mixtures of cresols was also examined in the continuous process and compared with single component biodegradation. The experimental results revealed that the biodegradation of o-cresol was highly inhibited by the presence of p-cresol and m-cresol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-khalid T, El-Naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Environ Sci Technol 42:1631–1690

    Article  CAS  Google Scholar 

  • Allsop PJ, Chisti Y, Moo-Young M, Sullivan GR (1993) Dynamics of phenol degradation by Pseudomonas putida. Biotechnol Bioeng 41(5):572–580

    Article  CAS  Google Scholar 

  • Alvarez PJ, Anid PJ, Vogel TM (1991) Kinetics of aerobic biodegradation of benzene and toluene in sandy aquifer material. Biodegradation 2:43–51

    Article  CAS  Google Scholar 

  • Al-Zuhair S, El-Naas M (2011) Immobilization of Pseudomonas putida in PVA gel particles for the biodegradation of phenol at high concentrations. Biochem Eng J 56:46–50

    Article  CAS  Google Scholar 

  • Arvin E, Jensen BK, Gundersen AT (1989) Substrate interactions during aerobic biodegradation of benzene. Appl Environ Microbiol 55:3221–3225

    CAS  Google Scholar 

  • Arya D, Kumar S, Kumar S (2011) Biodegradation dynamics and cell maintenance for the treatment of resorcinol and p-cresol by filamentous fungus Gliomastix indicus. J Hazard Mater 198:49–56

    Article  CAS  Google Scholar 

  • Awad YM, Abuzaid NS (2000) The influence of residence time on the anodic oxidation of phenol. Sep Purif Technol 18:227–236

    Article  CAS  Google Scholar 

  • Baggi G (2000) Ecological implication of synergistic and antagonistic interactions among growth and non growth analogs present in mixture. Ann Microbiol 50:103–115

    CAS  Google Scholar 

  • Bai J, Wen J-P, Li H-M, Jiang Y (2007) Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem 42:510–517

    Article  CAS  Google Scholar 

  • Bailey JE, Ollis DF (1986) Biochemical Engineering Fundamentals. McGraw-Hill Book Co, Singapore

    Google Scholar 

  • Basu A, Das D, Bapat P, Wangikar PP, Phale PS (2009) Sequential utilization of substrates by Pseudomonas putida CSV86: signatures of intermediate metabolites and online measurements. Microbiol Res 164:429–437

    Article  CAS  Google Scholar 

  • Bhattacharya SS, Karmakar S, Banerjee R (2009) Optimization of laccase mediated biodegradation of 2,4-dichlorophenol using genetic algorithm. Water Res 43:3503–3510

    Article  CAS  Google Scholar 

  • Caetano M, Valderrama C, Farran A, Cortina JL (2009) Phenol removal from aqueous solution by adsorption and ion exchange mechanisms onto polymeric resins. J Colloid Interface Sci 338:402–409

    Article  CAS  Google Scholar 

  • Chang I-S, Kim C-I, Nam B-U (2005) The influence of poly-vinyl-alcohol (PVA) characteristics on the physical stability of encapsulated immobilization media for advanced wastewater treatment. Process Biochem 40:3050–3054

    Article  CAS  Google Scholar 

  • Chen Y-M, Lin T-F, Huang C, Lin J-C, Hsieh F-M (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J Hazard Mater 148:660–670

    Article  CAS  Google Scholar 

  • Cheng Y, Lin H, Chen Z, Megharaj M, Naidu R (2012) Biodegradation of crystal violet using Burkholderia vietnamiensis C09 V immobilized on PVA–sodium alginate–kaolin gel beads. Ecotoxicol Environ Saf 83:108–114

    Article  CAS  Google Scholar 

  • de Ory I, Romero LE, Cantero D (1998) Modelling the kinetics of growth of Acetobacter aceti in discontinuous culture: influence of the temperature of operation. Appl Microbiol Biotechnol 49:189–193

    Article  CAS  Google Scholar 

  • Dursun AY, Tepe O (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J Hazard Mater 126:105–111

    Article  CAS  Google Scholar 

  • Elavarasan P, Kondamudi K, Upadhyayula S (2009) Statistical optimization of process variables in batch alkylation of p-cresol with tert-butyl alcohol using ionic liquid catalyst by response surface methodology. Chem Eng J 155:355–360

    Article  CAS  Google Scholar 

  • El-Naas MH, Al-Muhtaseb SA, Makhlouf S (2009) Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater 164:720–725

    Article  CAS  Google Scholar 

  • El-Naas MH, Al-Zuhair S, Alhaija MA (2010) Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chem Eng J 162:997–1005

    Article  CAS  Google Scholar 

  • El-Naas MH, Mourad AHI, Surkatti R (2013) Evaluation of the characteristics of polyvinyl alcohol (PVA) as matrices for the immobilization of Pseudomonas putida. Int Biodeterior Biodegrad 85:413–420

    Article  CAS  Google Scholar 

  • Fernández I, Suárez-Ojeda ME, Pérez J, Carrera J (2013) Aerobic biodegradation of a mixture of monosubstituted phenols in a sequencing batch reactor. J Hazard Mater 260:563–568

    Article  Google Scholar 

  • Hao OJ, Kim HM, Aseagren E, Kim H (2002) Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere 46(6):797–807

    Article  CAS  Google Scholar 

  • Ho K-L, Chen Y-Y, Lee D-J (2010) Functional consortia for cresol-degrading activated sludges: toxicity-to-extinction approach. Biores Technol 101:9000–9005

    Article  CAS  Google Scholar 

  • Hopper DJ, Taylor DG (1975) Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. J Bacteriol 122(1):1–6

    CAS  Google Scholar 

  • Jiang Y, Cai X, Wu D, Ren N (2010) Biodegradation of phenol and m-cresol by mutated Candida tropicalis. J Environ Sci 22:621–626

    Article  CAS  Google Scholar 

  • Juang R-S, Kao H-C, Tseng K-J (2010) Kinetics of phenol removal from saline solutions by solvent extraction coupled with degradation in a two-phase partitioning bioreactor. Sep Purif Technol 71:285–292

    Article  CAS  Google Scholar 

  • Kaymaz Y, Anıl Babaoğlu A, Pazarlioglu N (2011) Biodegradation kinetics of o-cresol by Pseudomonas putida DSM 548 (pJP4) and o-cresol removal in a batch-recirculation bioreactor system. Electron J Biotechnol 15:3

    Google Scholar 

  • Kim CJ, Maier WJ (1986) Acclimation and biodegradation of chlorinated organic compounds in the presence of alternate substrates. J (Water Pollut Control Fed) 58:157–164

    CAS  Google Scholar 

  • Klecka GM, Gibson DT (1981) Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165

    CAS  Google Scholar 

  • Li C, Li Y, Cheng X, Feng L, Xi C, Zhang Y (2013) Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Biores Technol 131:390–396

    Article  CAS  Google Scholar 

  • Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146

    Article  CAS  Google Scholar 

  • Liu H, Yu QJ, Wang G, Ye F, Cong Y (2011) Biodegradation of phenol at high concentration by a novel yeast Trichosporon montevideense PHE1. Process Biochem 46:1678–1681

    Article  CAS  Google Scholar 

  • Loh K-C, Cao B (2008) Paradigm in biodegradation using Pseudomonas putida—A review of proteomics studies. Enzyme Microbial Technol 43:1–12

    Article  CAS  Google Scholar 

  • Maeda M, Itoh A, Kawase Y (2005) Kinetics for aerobic biological treatment of o-cresol containing wastewaters in a slurry bioreactor: biodegradation by utilizing waste activated sludge. Biochem Eng J 22:97–103

    Article  CAS  Google Scholar 

  • Magrí A, Vanotti MB, Szögi AA (2012) Anammox sludge immobilized in polyvinyl alcohol (PVA) cryogel carriers. Biores Technol 114:231–240

    Article  Google Scholar 

  • Mazzoli R, Pessione E, Giuffrida MG, Fattori P, Barello C, Giunta C, Lindley ND (2007) Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures. Arch Microbiol 188:55–68

    Article  CAS  Google Scholar 

  • Minkevich IG, Andreyev SV, Eroshin VK (2000) The effect of two inhibiting substrates on growth kinetics and cell maintenance of the yeast Candida valida. Process Biochem 36(3):209–217

    Article  CAS  Google Scholar 

  • Nakai C, Hori K, Kagamiyama H, Nakazawa T, Nozaki M (1983) Purification, subunit structure, and partial amino acid sequence of metapyrocatechase. J Biol Chem 258:2916–2922

    CAS  Google Scholar 

  • Pakshirajan K, Chugh D, Saravanan P (2008) Feasibility of m-cresol degradation using an indigenous mixed microbial culture with glucose as co-substrate. Clean Technol Environ Policy 10:303–308

    Article  CAS  Google Scholar 

  • Perron N, Welander U (2004) Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process. Chemosphere 55:45–50

    Article  CAS  Google Scholar 

  • Rajani VP (2015) Microbial degradation of phenol–a review. Int J Res Rev 2:46–54

    Google Scholar 

  • Reardon KF, Mosteller DC, Bull Rogers JD (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008a) Biodegradation of phenol and m-cresol in a batch and fed batch operated internal loop airlift bioreactor by indigenous mixed microbial culture predominantly Pseudomonas sp. Biores Technol 99:8553–8558

    Article  CAS  Google Scholar 

  • Saravanan P, Pakshirajan K, Saha P (2008b) Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant. J Environ Sci 20:1508–1513

    Article  CAS  Google Scholar 

  • Tepe O, Dursun AY (2008) Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor. J Hazard Mater 151:9–16

    Article  CAS  Google Scholar 

  • Tsai S-Y, Juang R-S (2006) Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365. J Hazard Mater 138:125–132

    Article  CAS  Google Scholar 

  • Wang Y, Tian Y, Han B, Zhao H-B, Bi J-N, Cai B-L (2007) Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J Environ Sci 19:222–225

    Article  CAS  Google Scholar 

  • Wang L, Li Y, Yu P, Xie Z, Luo Y, Lin Y (2010) Biodegradation of phenol at high concentration by a novel fungal strain Paecilomyces variotii JH6. J Hazard Mater 183:366–371

    Article  CAS  Google Scholar 

  • Wojcieszyńska D, Hupert-Kocurek K, Greń I, Guzik U (2011) High activity catechol 2,3-dioxygenase from the cresols – Degrading Stenotrophomonas maltophilia strain KB2. Int Biodeterior Biodegrad 65:853–858

    Article  Google Scholar 

  • Yan J, Jianping W, Jing B, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29:227–234

    Article  CAS  Google Scholar 

  • Yao H, Ren Y, Wei C, Yue S (2011) Biodegradation characterisation and kinetics of m-cresol by Lysinibacillus cresolivorans. Water SA 37:15–20

    Article  CAS  Google Scholar 

  • Yujian W, Xiaojuan Y, Hongyu L, Wei T (2006) Immobilization of Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Polym Degrad Stab 91:2408–2414

    Article  Google Scholar 

  • Zhang L-S, Wu W-Z, Wang J-L (2007) Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel. J Environ Sci 19:1293–1297

    Article  CAS  Google Scholar 

  • Zheng Y, Hill DO, Kuo CH (1993) Destruction of cresols by chemical oxidation. J Hazard Mater 34:245–260

    Article  CAS  Google Scholar 

  • Zhou G-M, Fang HHP (1997) Co-degradation of phenol and m-cresol in a UASB reactor. Biores Technol 61:47–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Japan Cooperation Center, Petroleum (JCCP), and the technical support of the JX Nippon Research Institute Co., Ltd. (JX-NRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. El-Naas.

Additional information

Editorial responsibility M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surkatti, R., El-Naas, M.H. Competitive interference during the biodegradation of cresols. Int. J. Environ. Sci. Technol. 15, 301–308 (2018). https://doi.org/10.1007/s13762-017-1383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1383-2

Keywords

Navigation