Skip to main content

Advertisement

Log in

A review of materials used as carrier agents in pesticide formulations

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Development of environmentally-friendly pesticides for sustainable agriculture is a key focus in the agrochemical industry. Identifying novel active ingredients and improving the delivery system of a pesticide are the main challenges in developing new pesticides. Strategies for the control of delivery systems for slow and sustained release of agrochemicals are of great interest to environmental scientists. In this context, the selection of materials to be used as carrier agents in pesticide formulations is crucial. In recent years, the efficacy of several materials for agrochemical formulations has been evaluated by researchers. These materials have unique properties, such as being biodegradable and biocompatible, and having low toxicity and involving a simple preparation process. This review summarises recent applications of various materials in pesticide formulations. The application of the materials can effectively encapsulate or bind the pesticide’s active ingredients in the material’s matrix with a sustained release profile and slow mobility in soil. This review also discusses some issues and concerns that are faced in formulating pesticide products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abigail MEA, Samuel SM, Chidambaram R (2016) Application of rice husk nanosorbents containing 2,4-dichlorophenoxyacetic acid herbicide to control weeds and reduce leaching from soil. J Taiwan Inst Chem Eng 63:318–326

    Article  CAS  Google Scholar 

  • Al-Rajab AJ, Hakami OM (2014) Behavior of the non-selective herbicide glyphosate in agricultural soil. Am J Environ Sci 10(2):94–101

    Article  CAS  Google Scholar 

  • Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95:215–225

    Article  CAS  Google Scholar 

  • Aranaz I, Harris R, Heras A (2010) Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 14:308–330

    Article  CAS  Google Scholar 

  • Arias-Estévez M, López-Periago E, Martínez-Carballo E, Simal-Gándara J, Mejuto J-C, García-Río L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123(4):247–260

    Article  CAS  Google Scholar 

  • Armbrust KL, Peeler HB (2002) Effects of formulation on the run-off of imidacloprid from turf. Pest Manag Sci 58(7):702–706

    Article  CAS  Google Scholar 

  • Benfeito S, Rodrigues T, Garrido J, Borges F, Garrido EM (2013) Host-guest interaction between herbicide oxadiargyl and hydroxypropyl-β-cyclodextrin. Sci World J 2013:1–6

    Article  CAS  Google Scholar 

  • Boutin C, Strandberg B, Carpenter D, Mathiassen SK, Thomas PJ (2014) Herbicide impact on non-target plant reproduction: what are the toxicological and ecological implications? Environ Pollut 185:295–306

    Article  CAS  Google Scholar 

  • Boyandin AN, Volova TG (2015) Application of polyhydroxyalkanoates for development of targeted forms of pecticides. Int J Gen Chem 1:10–14

    Google Scholar 

  • Brand RM, Mueller C (2002) Transdermal penetration of atrazine, alachlor, and trifluralin: effect of formulation. Toxicol Sci 68(1):18–23

    Article  CAS  Google Scholar 

  • Brigante M, Avena M (2014) Synthesis, characterization and application of a hexagonal mesoporous silica for pesticide removal from aqueous solution. Micropor Mesopor Mater 191:1–9

    Article  CAS  Google Scholar 

  • Cai D, Wang L, Zhang G, Zhang X, Wu Z (2013) Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica. ACS Appl Mater Interfaces 5(18):9212–9216

    Article  CAS  Google Scholar 

  • Campos EVR, de Oliveira JL, Fraceto LF, Singh B (2015) Polysaccharides as safer release systems for agrochemicals. Agron Sustain Develop 35(1):47–66

    Article  CAS  Google Scholar 

  • Capello C, Wernet G, Sutter J, Hellweg S, Hungerbühler K (2009) A comprehensive environmental assessment of petrochemical solvent production. Int J Life Cycle Assess 14(5):467–479

    Article  CAS  Google Scholar 

  • Castro MJL, Ojeda C, Cirelli AF (2014) Advances in surfactants for agrochemicals. Environ Chem Lett 12:85–95

    Article  CAS  Google Scholar 

  • Celis R, Trigo C, Facenda G, Hermosín MDC, Cornejo J (2007) Selective modification of clay minerals for the adsorption of herbicides widely used in olive groves. J Agric Food Chem 55:6650–6658

    Article  CAS  Google Scholar 

  • Céspedes FF, García SP, Sánchez MV, Pérez MF (2013) Bentonite and anthracite in alginate-based controlled release formulations to reduce leaching of chloridazon and metribuzin in a calcareous soil. Chemosphere 92:918–924

    Article  CAS  Google Scholar 

  • Chen J, Wang W, Xu Y, Zhang X (2011) Slow-release formulation of a new biological pesticide, pyoluteorin with mesoporous silica. J Agric Food Chem 59:307–311

    Article  CAS  Google Scholar 

  • Chin C-P, Wu H-S, Wang SS (2011) New approach to pesticide delivery using nanosuspensions: research and applications. Ind Eng Chem Res 50(12):7637–7643

    Article  CAS  Google Scholar 

  • Choy J-H, Choi S-J, Oh J-M, Park T (2007) Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci 36:122–132

    Article  CAS  Google Scholar 

  • Cox C, Surgan M (2006) Unidentified inert ingredients in pesticides: implications for human and environmental health. Environ Health Perspect 114(12):1803–1806

    CAS  Google Scholar 

  • de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  CAS  Google Scholar 

  • Ding K, Shi L, Zhang L, Zeng T, Yin Y, Yi Y (2016) Synthesis of photoresponsive polymeric propesticide micelles based on PEG for the controlled release of a herbicide. Polym Chem 7:899–904

    Article  CAS  Google Scholar 

  • Dubey S, Jhelum V, Patanjali PK (2011) Control release agrochemicals formulations: a review. J Sci Ind Res 70:105–112

    CAS  Google Scholar 

  • Eddleston M, Street JM, Self I, Thompson A, King T, Williams N, Naredo G, Dissanayake K, Yu L-M, Worek F (2012) A role for solvents in the toxicity of agricultural organophosphorus pesticides. Toxicology 294(2):94–103

    Article  CAS  Google Scholar 

  • El Jay A (1996) Toxic effects of organic solvents on the growth of Chlorella vulgaris and Selenastrum capricornutum. Bull Environ Contam Toxicol 57:191–198

    Article  Google Scholar 

  • Fan T, Wu X, Peng Q (2014) Sparingly soluble pesticide dissolved in ionic liquid aqueous. J Phys Chem B 118(39):11546–11551

    Article  CAS  Google Scholar 

  • Feng B-H, Peng L-F (2012) Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohyd Polym 88:576–582

    Article  CAS  Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341(6147):752–758

    Article  CAS  Google Scholar 

  • Fernandes C, Encarnação I, Gaspar A, Garrido J, Borges F, Garrido EM (2014) Influence of hydroxypropyl-β-cyclodextrin on the photostability of fungicide pyrimethanil. Int J Photoenergy 2014:1–8

    Article  CAS  Google Scholar 

  • Fernández-Pérez M, Flores-Céspedes F, Daza-Fernàndez I, Vidal-Peña F, Villafranca-Sànchez M (2014) Lignin and lignosulfonate-based formulations to protect pyrethrins against photodegradation and volatilization. Ind Eng Chem Res 53(35):13557–13564

    Article  CAS  Google Scholar 

  • Fernàndez-Pérez M, Villafranca-Sànchez M, Flores-Céspedes F, Daza-Fernàndez I (2011) Ethylcellulose and lignin as bearer polymers in controlled release formulations of chloridazon. Carbohyd Polym 83(4):1672–1679

    Article  CAS  Google Scholar 

  • Fernandez-Urrusuno R, Gines JM, Morillo E (2000) Development of controlled release formulations of alachlor in ethylcellulose. J Microencapsul 17(3):331–342

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014) Food needs and population. http://www.fao.org/docrep/x0262e/x0262e23.htm. Accessed Dec 2015

  • Food and Agriculture Organization of the United Nations (2016) Pesticide use. http://faostat3.fao.org/download/R/RP/E. Accessed May 2016

  • Galán-Jiménez MdC, Mishael Y-G, Nir S, Morillo E, Undabeytia T (2013) Factors affecting the design of slow release formulations of herbicides based on clay-surfactant systems A methodological approach. PloS One 8(3):e59060

    Article  CAS  Google Scholar 

  • García MC, Alfaro MC, Calero N, Muñoz J (2014) Influence of polysaccharides on the rheology and stabilization of α-pinene emulsions. Carbohyd Polym 105:177–183

    Article  CAS  Google Scholar 

  • Garrido EM, Santos M, Silva P, Cagide F, Garrido J, Borges F (2012) Host-guest complexes of phenoxy alkyl acid herbicides and cyclodextrins. MCPA and β-cyclodextrin. J Environ Sci Health Part B 47(9):869–875

    Article  CAS  Google Scholar 

  • Grillo R, Santo Pereira AdE, de Melo NFS, Porto RM, Feitosa LO, Tonello PS, Dias Filho NL, Rosa AH, Lima R, Fraceto LF (2011) Controlled release system for ametryn using polymer microspheres: preparation, characterization and release kinetics in water. J Hazard Mater 186(2):1645–1651

    Article  CAS  Google Scholar 

  • Grillo R, dos Santos NZP, Maruyama CR, Rosa AH, de Lima R, Fraceto LF (2012) Poly (ε-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9

    Article  CAS  Google Scholar 

  • Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J Hazard Mater 278:163–171

    Article  CAS  Google Scholar 

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage: 2006 and 2007 market estimates. United States of Environmental Protection Agency, Washington

    Google Scholar 

  • Hazra DK (2015) Recent advancement in pesticide formulations for user and environment friendly pest management. Int J Res Rev 2:35–40

    Google Scholar 

  • Herzfeld D (2011) Private pesticide applicator’s training manual, 19th edn. University of Minnesota Extension. http://www.extension.umn.edu/agriculture/pesticide-safety/ppat_manual/Intro.pdf. Accessed Dec 2015

  • Hu L, Xia J, Zhan SL, Huang XD, Xu HH (2006) The preparation and characterizations of rotenone cyclodextrin inclusion complex the bioactivity against Bursaphelenchus xyliphilus. J Econ Entomol 86:706–711

    Google Scholar 

  • Huang B, Lei C, Wei C, Zeng G (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environ Int 71:118–138

    Article  CAS  Google Scholar 

  • Hussein MZ, Nazarudin NFB, Sarijo SH, Yarmo MA (2012) Synthesis of a layered organic-inorganic nanohybrid of 4-chlorophenoxyacetate-zinc-layered hydroxide with sustained release properties. J Nanomater 2012:1–9

    Google Scholar 

  • Ihegwuagu NE, Sha’ato R, Tor-anyiin TA, Nnamonu LA, Buekes P, Sone B, Maaza M (2016) Facile formulation of starch-silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New J Chem 40:1777–1784

    Article  CAS  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  Google Scholar 

  • Jessop PG, Ahmadpour F, Buczynski MA, Burns TJ, Green Ii NB, Korwin R, Long D, Massad SK, Manley JB, Omidbakhsh N (2015) Opportunities for greener alternatives in chemical formulations. Green Chem 17(5):2664–2678

    Article  CAS  Google Scholar 

  • Jiang L, Mo J, Kong Z, Qin Y, Dai L, Wang Y, Ma L (2015) Effects of organobentonites on imidacloprid release from alginate-based formulation. Appl Clay Sci 105–106:52–59

    Article  CAS  Google Scholar 

  • Kah M, Hofmann T (2014) Nanopesticide research: current trends and future priorities. Environ Int 63:224–235

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2012) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16):1823–1867

    Article  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Katagi T (2008) Surfactant effects on environmental behavior of pesticides. In: Reviews of environmental contamination and toxicology. Springer, p 71–77

  • Kettel MJ, Schaefer K, Groll J, Moeller M (2014) Nanogels with high active β-cyclodextrin content as physical coating system with sustained release properties. ACS Appl Mater Interfaces 6(4):2300–2311

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Knowles A (2008) Recent developments of safer formulations of agrochemicals. Environmentalist 28(1):35–44

    Article  Google Scholar 

  • Kumar RSS, Shiny PJ, Anjali CH, Jerobin J, Goshen KM, Magdassi S, Mukherjee A, Chandrasekaran N (2013) Distinctive effects of nano-sized permethrin in the environment. Environ Sci Pollut Res 20(4):2593–2602

    Article  CAS  Google Scholar 

  • Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohyd Polym 101:1061–1067

    Article  CAS  Google Scholar 

  • Lagaly G (2001) Pesticide-clay interactions and formulations. Appl Clay Sci 18:205–209

    Article  CAS  Google Scholar 

  • Lao S-B, Zhang Z-X, Xu H-H, Jiang G-B (2010) Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohyd Polym 82(4):1136–1142

    Article  CAS  Google Scholar 

  • Li Y, Zhang S, Meng X, Chen X, Ren G (2011) The preparation and characterization of a novel amphiphilicoleoyl-carboxymethyl chitosan self-assembled nanoparticles. J Carbohyd Polym 83:130–136

    Article  CAS  Google Scholar 

  • Li J, Yao J, Li Y, Shao Y (2012) Controlled release and retarded leaching of pesticides by encapsulating in carboxymethyl chitosan/bentonite composite gel. J Environ Sci Health B 47(8):795–803

    Article  CAS  Google Scholar 

  • Liu G, Gan J, Chen A, Liu Q, Zhao X (2010) Synthesis and characterization of an amphiphilic chitosan bearing octyl and methoxy polyethylene glycol groups. Nat Sci 2(7):707–712

    CAS  Google Scholar 

  • Liu Y, Sun Y, He S, Zhu Y, Ao M, Li J, Cao Y (2013) Synthesis and characterization of gibberellin-chitosan conjugate for controlled-release applications. Int J Biol Macromol 57:213–217

    Article  CAS  Google Scholar 

  • Liu J, Zhang X, Zhang Y (2015) Preparation and release behavior of chlorpyrifos adsolubilized into layered zinc hydroxide nitrate intercalated with dodecylbenzenesulfonate. ACS Appl Mater Interfaces 7(21):11180–11188

    Article  CAS  Google Scholar 

  • Liu B, Wang Y, Yang F, Wang X, Shen H, Cui H, Wu D (2016) Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloids Surf B Biointerfaces 144:38–45

    Article  CAS  Google Scholar 

  • Lu W, Lu M-L, Zhang Q-P, Tian Y-Q, Zhang Z-X, Xu H-H (2013) Octahydrogenated retinoic acid-conjugated glycol chitosan nanoparticles as a novel carrier of azadirachtin: synthesis, characterization, and in vitro evaluation. J Polym Sci A Polym Chem 51(18):3932–3940

    Article  CAS  Google Scholar 

  • Mathieu C, Duval R, Xu X, Rodrigues-Lima F, Dupret J-M (2015) Effects of pesticide chemicals on the activity of metabolic enzymes: focus on thiocarbamates. Expert Opin Drug Metab Toxicol 11(1):81–94

    CAS  Google Scholar 

  • Mei XD, Liang YH, Zhang T, Ning J, Wang ZY (2014) An amphiphilic chitosan-polylactide graft copolymer and its nanoparticles as fungicide carriers. Adv Mater Res 1051:21–28

    Article  CAS  Google Scholar 

  • Mulqueen P (2003) Recent advances in agrochemical formulation. Adv Colloid Interface Sci 106:83–107

    Article  CAS  Google Scholar 

  • National Pesticides Information Center (2015) Type of pesticides. http://npic.orst.edu/ingred/ptype/index.html. Accessed Dec 2015

  • Nguyen HM, Hwang I-C, Park J-W, Park H-J (2012) Photoprotection for deltamethrin using chitosan-coated beeswax solid lipid nanoparticles. Pest Manag Sci 68(7):1062–1068

    Article  CAS  Google Scholar 

  • Odukkathil G, Vasudevan N (2013) Toxicity and bioremediation of pesticides in agricultural soil. Rev Environ Sci Biotechnol 12(4):421–444

    Article  CAS  Google Scholar 

  • Pereira EIc, Giroto AS, Bortoli A, Yamamoto CF, Marconcini JM, de Campos Bernardi AC, Ribeiro C (2015) Perspectives in nanocomposites for the slow and controlled release of agrochemicals: fertilizers and pesticides. In: Rai M (ed) Nanotechnology Food Agriculture Springer, p 241–265

  • Pereira AES, Grillo R, Mello NFS, Rosa AH, Fraceto LF (2014) Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215

    Article  CAS  Google Scholar 

  • Pérez-Martínez JI, Ginés JM, Morillo E, González-Rodríguez ML, Moyano Méndez JR (2000) Improvement of the desorption of the pesticide 2, 4-D via complexation with HP-β-cyclodextrin. Pest Manag Sc 56(5):425–430

    Article  Google Scholar 

  • Peteu SF, Oancea F, Sicuia OA, Constantinescu F, Dinu S (2010) Responsive polymers for crop protection. Polymers 2:229–251

    Article  CAS  Google Scholar 

  • Petrović G, Stojanović G, Palić R (2011) Modified β-cyclodextrins as prospective agents for improving water solubility of organic pesticides. Environ Chem Lett 9:423–429

    Article  CAS  Google Scholar 

  • Puoci F, Iemma F, Spizzirri UG, Cirillo G, Curcio M, Picci G (2008) Polymer in agriculture: a Review. Am J Agric Biol Sci 3(1):299–314

    Article  Google Scholar 

  • Qian K, Shi T, Tang T, Zhang S, Liu X, Cao Y (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1–2):51–57

    Article  CAS  Google Scholar 

  • Qian K, Shi T, He S, Luo L, Liu X, Cao Y (2013) Release kinetics of tebuconazole from porous hollow silica nanospheres prepared by miniemulsion method. Micropor Mesopor Mater 169:1–6

    Article  CAS  Google Scholar 

  • Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80

    Article  CAS  Google Scholar 

  • Rani PU, Madhusudhanamurthy J, Sreedhar B (2014) Dynamic adsorption of α-pinene and linalool on silica nanoparticles for enhanced antifeedant activity against agricultural pests. J Pest Sci 87(1):191–200

    Article  Google Scholar 

  • Rashidzadeh A, Olad A, Salari D, Jalil Hejazi M (2013) On the encapsulation of natural pesticide using polyvinyl alcohol/alginate-montmorillonite nanocomposite for controlled release application. Polym Eng Sci 54(12):2707–2714

    Article  CAS  Google Scholar 

  • Relyea RA, Edwards K (2010) What doesn’t kill you makes you sluggish: how sublethal pesticides alter predator-prey interactions. Copeia 4:558–567

    Article  Google Scholar 

  • Rojas L (2012) International pesticide market and regulatory. http://wcropchemicals.com/pesticide_regulatory_profile/. Accessed Dec 2015

  • Roy A, Bundela H (2015) Review on biopolymer based agrochemicals formulations. Int J Mod Eng Res Technol 2(1):5–11

    Google Scholar 

  • Roy A, Singh SK, Bajpai J, Bajpai AK (2014) Controlled pesticide release from biodegradable polymers. Cent Eur J Chem 12(4):453–469

    Article  CAS  Google Scholar 

  • Sahoo S, Manjaiah KM, Datta SC, Ahmed Shabeer TP, Kumar J (2014) Kinetics of metribuzin release from bentonite-polymer composites in water. J Environ Sci Health B 49(8):591–600

    Article  CAS  Google Scholar 

  • Sanchez-Martin MJ, Rodriguez-Cruz MS, Andrades MS, Sachez-Camazano M (2006) Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: influence of clay type and pesticide hydrophobicity. Appl Clay Sci 31:216–228

    Article  CAS  Google Scholar 

  • Saxena S, Pandey AK (2001) Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55(4):395–403

    Article  CAS  Google Scholar 

  • Shen C, Yang X, Wang Y, Zhou J, Chen C (2012) Complexation of capsaicin with β-cyclodextrins to improve pesticide formulations: effect on aqueous solubility, dissolution rate, stability and soil adsorption. J Incl Phenom Macrocycl Chem 72(3–4):263–274

    Article  CAS  Google Scholar 

  • Shirvani M, Farajollahi E, Bakhtiari S, Ogunseitan OA (2014) Mobility and efficacy of 2,4-D herbicide from slow-release delivery systems based on organo-zeoliteand organo-bentonite complexes. J Environ Sci Health B 49:255–262

    Article  CAS  Google Scholar 

  • Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  Google Scholar 

  • Shu-Li T, Yan-Hua W, Yan-Mei X, Xiao-Bing L, Zhao-Hai Q, Yu-Mei X (2014) Study on the molecular recognition of herbicide quizalofop-p-ethyl with β-cyclodextrin. J Chem Soc Pak 36(6):1169–1174

    Google Scholar 

  • Silva MdS, Cocenza DS, Grillo R, de Melo NFS, Tonello PS, de Oliveira LC, Cassimiro DL, Rosa AH, Fraceto LF (2011) Paraquat-loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190(1):366–374

    Article  CAS  Google Scholar 

  • Simpson WM Jr (2006) Pesticides. In: Medicine Agricultural (ed) Lessenger JE. Springer, New York, pp 167–179

    Google Scholar 

  • Singh B, Sharma DK, Kumar R, Gupta A (2010) Development of a new controlled pesticide delivery system based on neem leaf powder. J Hazard Mater 177:290–299

    Article  CAS  Google Scholar 

  • Tan W-M, Hou N, Pang S, Zhu X-F, Li Z-H, Wen L-X, Duan LS (2012) Improved biological effects of uniconazole using porous hollow silica nanoparticles as carriers. Pest Manag Sci 68(3):437–443

    Article  CAS  Google Scholar 

  • Tan D, Yuan P, Annabi-Bergaya F, Dong F, Liu D, He H (2015) A comparative study of tubular halloysite and platy kaolinite as carriers for loading and release of the herbicide amitrole. Appl Clay Sci 114:190–196

    Article  CAS  Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Article  CAS  Google Scholar 

  • Tominack RL (2000) Herbicide formulations. Clin Toxicol 38(2):129–135

    CAS  Google Scholar 

  • Turgut C, B-m Newby, Cutright TJ (2004) Determination of optimal water solubility of capsaicin for its usage as a non-toxic antifoulant. Environ Sci Pollut Res 11(1):7–10

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2015) What are biopesticides. http://www.epa.gov/ingredients-used-pesticide-products/what-are-biopesticides. Accessed Dec 2015

  • Wang F, Zhang D, Duan C, Jia L, Feng F, Liu Y, Wang Y, Hao L, Zhang Q (2011) Preparation and characterizations of a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid conjugates and self-aggregates. J Carbohyd Polym 84:1192–1200

    Article  CAS  Google Scholar 

  • Wanyika H (2013) Sustained release of fungicide metalaxyl by mesoporous silica nanospheres. J Nanopart Res 15:1–9

    Article  CAS  Google Scholar 

  • Wibowo D, Zhao C-X, Peters BC, Middelberg APJ (2014) Sustained release of fipronil Insecticide in vitro and in vivo from biocompatible silica nanocapsules. J Agric Food Chem 62(52):12504–12511

    Article  CAS  Google Scholar 

  • Xu X, Su X, Bai B, Wang H, Suo Y (2016) Controlled pesticide release of a novel superabsorbent by grafting citric acid onto water hyacinth powders with the assistance of dopamine. RSC Adv 6:29880–29888

    Article  CAS  Google Scholar 

  • Yan Y, Hou H, Ren T, Xu Y, Wang Q, Xu W (2013) Utilization of environmental waste cyanobacteria as a pesticide carrier: studies on controlled release and photostability of avermectin. Colloids Surf B Biointerfaces 102:341–347

    Article  CAS  Google Scholar 

  • Yañez C, Araya M, Bollo S (2010) Complexation of herbicide bentazon with native and modified β-cyclodextrin. J Incl Phenom Macrocycl Chem 68:237–241

    Article  CAS  Google Scholar 

  • Yi Y, Xu S, Sun H, Chang D, Yin Y, Zheng H, Xu H, Lou Y (2011) Gelation of photocrosslinkable carboxymethyl chitosan and its application in controlled release of pesticide. Carbohyd Polym 86(2):1007–1013

    Article  CAS  Google Scholar 

  • Zhang W, Jiang F, Ou J (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Environ Sci 1(2):125–144

    CAS  Google Scholar 

  • Zhang J, Li M, Fan T, Xu Q, Wu Y, Chen C, Huang Q (2013) Construction of novel amphiphilic chitosan copolymer nanoparticles for chlorpyrifos delivery. J Polym Res 20(3):1–11

    Article  CAS  Google Scholar 

  • Zhang X, Liu J, Hou W, Tong J, Ren L, Sun G, Sun Y (2016) Preparation and properties of pesticide/cyclodextrin complex intercalated into ZnAl-layered double hydroxide. Ind Eng Chem Res 55(6):1550–1558

    Article  CAS  Google Scholar 

  • Zhao D, Zhang Y, Lv L, Li J (2013) Preparation and release of avermectin-loaded cellulose acetate ultrafinefibers. Polym Eng Sci 53:609–614

    Article  CAS  Google Scholar 

  • Zhu W, Schmehl DR, Mullin CA, Frazier JL (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. Plos One 9(1):e77547

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education Malaysia (FRGS 2014-0105-101-02) and the Islamic Educational, Scientific and Cultural Organization (ISESCO 2016-0008-102-11). S.N.M. Yusoff thanks the Ministry of Education Malaysia for providing a MyBrain15 (MyPhD) Scholarship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kamari.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusoff, S.N.M., Kamari, A. & Aljafree, N.F.A. A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 13, 2977–2994 (2016). https://doi.org/10.1007/s13762-016-1096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1096-y

Keywords

Navigation