Skip to main content
Log in

Distribution of the potential and concentration of electrons in low-temperature plasma with hollow microparticles

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Using approximation of a uniform background (the jellium model) for a condensed dispersed phase, the analytical expressions describing a spatial distribution of the potential of the electric field and electron concentration in the low-temperature plasma at equilibrium which contains hollow spherical microparticles are obtained. The influence of heating temperature of plasma on the above distributions is studied, and the dependencies of the charge on microparticle radius, the size of the microparticle cavity and the absolute temperature of plasma are calculated. It is shown that electrons can be emitted not only into the surrounding plasma but also into the cavity of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artsimovich LA, Sagdeyev RZ (1979) Plasma physics for physicists. Atomizdat, Moscow

    Google Scholar 

  • Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College, Philadelphia

    Google Scholar 

  • Couedel L, Nosenko V, Ivlev AV, Zhdanov SK, Thomas HM, Morfill GE (2010) Direct observation of mode-coupling instability in two-dimensional plasma crystals. Phys Rev Lett 104:195001

    Article  CAS  Google Scholar 

  • D’yachkov LG, Khrapak AG, Khrapak SA (2008) Influence of electron emission on the charge and shielding of a microparticle in plasma in the regime of a continuous medium. Zh Éksp Teor Fiz 133:197–203

    Google Scholar 

  • Dautov G, Fayrushin I, Kashapov N (2014) Influence of metal macroparticles to the electron density in a dusty plasma. J Phys: Conf Ser 567:012006

    Google Scholar 

  • Delzanno GL, Tang XZ (2014) Charging and heat collection by a positively charged dust grain in a plasma. Phys Rev Lett 113:035002

    Article  Google Scholar 

  • Ekardt W (1984) Work function of small metal particles: self-consistent spherical jellium-background model. Phys Rev B 29:1558

    Article  CAS  Google Scholar 

  • Fairushin I, Dautov I, Shamsutdinov A (2014) Distribution of electric field near the surface of the aluminum oxide particle in the dust-electron thermal plasma. J Phys: Conf Ser 567:012007

    Google Scholar 

  • Fomenko VS (1981) Emissivity of materials. Naukova dumka, Kiev

    Google Scholar 

  • Fortov YV, Khrapak AG, Yakubov IT (2004) Physics of collisional plasma. Study guide. Fizmatlit, Moscow

    Google Scholar 

  • Fortov VE, Petrov OF, Vaulina OS, Timirkhanov RA (2012) Viscosity of a strongly coupled dust component in a weakly ionized plasma. Phys Rev Lett 109:055002

    Article  CAS  Google Scholar 

  • Ivanov VK, Ipatov AN, Kharchenko VA (1996) Optimized ZHELE model for metal clusters with screen Coulomb interaction. Zh Éksp Teor Fiz 109:902–915

    Google Scholar 

  • Khrapak SA, Morfill GE, Fortov VE, D’yachkov LG, Khrapak AG, Petrov OF (2007) Attraction of positively charged particles in highly collisional plasmas. Phys Rev Lett 99:055003

    Article  CAS  Google Scholar 

  • Krauz VI, Martynenko YV, Svechnikov NY, Smirnov VP, Stankevich VG, Khimchenko LN (2010) Nanostructures in controlled thermonuclear fusion devices. Phys Usp 53:1015–1038

    Article  CAS  Google Scholar 

  • Landau LD, Lifshits YM (2010) Theoretical physics, vol 5. Fizmatlit, Moscow

    Google Scholar 

  • Ma H et al (2007) Nest‐like silicon nanospheres for high‐capacity lithium storage. Adv Mater 19:4067

    Article  CAS  Google Scholar 

  • Merlino RL (2005) Experimental investigations of dusty plasmas. AIP Conf Proc 799:3. doi:10.1063/1.2134567

    Article  CAS  Google Scholar 

  • Samarian AA, Vaulina OS, Nefedov AP, Fortov VE, James BW, Petrov OF (2001) Positively charged particles in dusty plasmas. Phys Rev E 64:056407

    Article  CAS  Google Scholar 

  • Selwyn GS, Heidenreich JE, Haller KL (1990) Particle trapping phenomena in radio frequency plasmas. Appl Phys Lett 57:1878

    Article  Google Scholar 

  • Shukla PK, Mamun AA (2002) Introduction to dusty plasma physics. IOP, Bristol

    Book  Google Scholar 

  • Smirnov MB, Krainov VP (1999) Multiple ionization of a Thomas-Fermi cluster by a strong electromagnetic field. Zh Éksp Teor Fiz 115:2014–2019

    Google Scholar 

  • Smirnov RD, Pigarov AY, Rosenberg M, Krasheninnikov SI, Mendis DA (2007) Modelling of dynamics and transport of carbon dust particles in tokamaks. Plasma Phys Control Fusion 49:347

    Article  CAS  Google Scholar 

  • Smith BA et al (1982) A new look at the Saturn system: the Voyager 2 images. Science 215:504–537

    Article  CAS  Google Scholar 

  • Solonenko OP, Gulyaev IP, Smirnov AV (2011) Thermal plasma processes for production of hollow spherical powders: theory and experiment.  J Thermal Sci Technol 6:219–234

    Article  CAS  Google Scholar 

  • Song YL, Huang F, Chen ZY, Liu YH, Yu MY (2016) Self-organization and oscillation of negatively charged dust particles in a 2-dimensional dusty plasma. Phys Lett A 380:886–895

    Article  CAS  Google Scholar 

  • Thomas E Jr (2009) Dust clouds in dc-generated dusty plasmas: transport, waves, and three-dimensional effects. Contrib Plasma Phys 49:316–345

    Article  CAS  Google Scholar 

  • Valderrama E, Favre M, Bhuyan H, Ruiz HM, Wyndham E, Valenzuela J, Chuaqui H (2010) Sub-micron size carbon structures synthesized using plasma enhanced CVD, without external heating and no catalyzer action. Surf Coat Technol 240:2940–2943

    Article  Google Scholar 

  • Vaverka J, Richterová I, Vyšinka M, Pavlü J, Šafránková J, Němeček Z (2014) The influence of secondary electron emission on the floating potential of tokamak-born dust. Plasma Phys Control Fusion 56:025001

    Article  Google Scholar 

  • Vishnyakov VI (2012) Charging of dust in thermal collisional plasmas. Phys Rev E 85:026402

    Article  Google Scholar 

  • Vishnyakov VI, Dragan GS (2006) Thermoemission (dust-electron) plasmas: theory of neutralizing charges. Phys Rev E 73:026403

    Article  CAS  Google Scholar 

  • Vishnyakov VI, Dragan GS, Evtuhov VM (2007) Nonlinear Poisson–Boltzmann equation in spherical symmetry. Phys Rev E 76:036402

    Article  CAS  Google Scholar 

  • Vladimirov SV, Ostrikov K, Samarian AA (2005) Physics and applications of complex plasmas. Imperial College Press, London

    Book  Google Scholar 

  • Zolotko AN, Vovchuk YI, Poletayev NI, Florko AV (1996) Synthesis of nanooxides in two-phase laminar flames. Phys Combust Explos 32:2

    Google Scholar 

Download references

Acknowledgments

The work was performed within the framework of the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Fayrushin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayrushin, I.I., Dautov, I.G. & Kashapov, N.F. Distribution of the potential and concentration of electrons in low-temperature plasma with hollow microparticles. Int. J. Environ. Sci. Technol. 14, 2555–2560 (2017). https://doi.org/10.1007/s13762-016-1054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-1054-8

Keywords

Navigation