Skip to main content
Log in

Kinetic modeling of CO oxidation over La1−x A x Mn0.6Cu0.4O3 (A = Sr and Ce) nanoperovskite-type mixed oxides

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, catalytic oxidation of CO over the perovskite-type oxides La1−x A x Mn0.6Cu0.4O3 (A = Sr and Ce, x = 0, 0.1, 0.2, 0.3 and 0.4) was investigated. The catalysts were synthesized by sol–gel auto-combustion method and were further characterized by XRD, BET, FT-IR, H2-TPR and SEM. XRD patterns revealed that the oxides were single-phase perovskite-type oxides. Traces of Cu2O3, Sr2O3 and Ce2O3 were also detected in perovskites with high contents of Sr and Ce. Specific surface areas of perovskites were also determined to be about 16 and 32 m2/g. Reducibility of the perovskites, also, is strongly affected by substitution of La in A site by Sr and Ce. Perovskite catalysts show a high activity in catalytic oxidation of CO; substitution of Sr and Ce further enhanced CO oxidation activity. Highest activity was achieved by La0.7Ce0.3Mn0.6Cu0.4O3: Nearly complete elimination of CO was achieved at 145 °C with this catalyst. Kinetic studies for CO oxidation were performed based on Langmuir–Hinshelwood mechanisms. According to kinetic calculations, the most probable mechanism is the LH–OS–ND (adsorption of the reagents on same types of sites and non-dissociative adsorption of oxygen) which can predict the experimental data with correlation coefficient of R 2 = 0.9933.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdolrahmani M, Parvari M, Habibpoor M (2010) Effect of copper substitution and preparation methods on the LaMnO3±δ structure and catalysis of methane combustion and CO oxidation. Chin J Catal 31:394–403

    Article  CAS  Google Scholar 

  • Ferrer V, Finol D, Solano R, Moronta A, Ramos M (2015) Reduction of NO by CO using Pd–CeTb and Pd–CeZr catalysts supported on SiO2 and La2O3–Al2O3. J Environ Sci 27:87–96

    Article  Google Scholar 

  • Gao B, Deng J, Liu Y, Zhao Z, Li X, Wang Y, Dai H (2013) Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide. Chin J Catal 34:2223–2229

    Article  CAS  Google Scholar 

  • Gupta V, Agarwal S, Saleh TA (2011a) Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res 45:2207–2212

    Article  CAS  Google Scholar 

  • Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A (2011b) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45:4047–4055

    Article  CAS  Google Scholar 

  • Gupta VK, Agarwal S, Saleh TA (2011c) Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J Hazard Mater 185:17–23

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Saleh T, Nayak A, Malathi S, Agarwal S (2011d) Equilibrium and thermodynamic studies on the removal and recovery of safranine-T dye from industrial effluents. Sep Sci Technol 46:839–846

    Article  CAS  Google Scholar 

  • Gupta VK, Jain R, Mittal A, Saleh TA, Nayak A, Agarwal S, Sikarwar S (2012) Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater Sci Eng C 32:12–17

    Article  CAS  Google Scholar 

  • Harriott P (2002) Chemical reactor design. CRC Press, London

    Book  Google Scholar 

  • Hosseini SA, Sadeghi MT, Alemi A, Niaei A, Salari D, Leila K-A (2010) Synthesis, characterization, and performance of LaZn x Fe1−x O3 perovskite nanocatalysts for toluene combustion. Chin J Catal 31:747–750

    Article  CAS  Google Scholar 

  • Hosseini SA, Salari D, Niaei A, Oskoui SA (2013) Physical–chemical property and activity evaluation of LaB0.5Co0.5O3 (B = Cr, Mn, Cu) and LaMn x Co1−x O3 (x = 0.1, 0.25, 0.5) nano perovskites in VOC combustion. J Ind Eng Chem 19:1903–1909

    Article  CAS  Google Scholar 

  • Jaenicke S, Chuah G, Lee J (1991) Catalytic CO oxidation over manganese-containing perovskites. In: Kee Lee H (ed) Fourth symposium on our environment. Springer, Berlin, pp 131–138

    Chapter  Google Scholar 

  • Karthikeyan S, Gupta V, Boopathy R, Titus A, Sekaran G (2012) A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: kinetic and spectroscopic studies. J Mol Liq 173:153–163

    Article  CAS  Google Scholar 

  • Khanfekr A, Arzani K, Nemati A, Hosseini M (2009) Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles. Int J Environ Sci Technol 6:105–112

    Article  CAS  Google Scholar 

  • Ladas S, Poppa H, Boudart M (1981) The adsorption and catalytic oxidation of carbon monoxide on evaporated palladium particles. Surf Sci 102:151–171

    Article  CAS  Google Scholar 

  • Libby W (1971) Promising catalyst for auto exhaust. Science (New York, NY) 171:499–500

    Article  CAS  Google Scholar 

  • Lin Y-C, Hohn KL (2014) Perovskite catalysts—a special issue on versatile oxide catalysts. Catalysts 4:305–306

    Article  CAS  Google Scholar 

  • Megha U, Shijina K, Varghese G (2014) Nanosized LaCo0.6Fe0.4O3 perovskites synthesized by citrate sol gel auto combustion method. Process Appl Ceram 8:87–92

    Article  CAS  Google Scholar 

  • Meiqing S, Zhen Z, Jiahao C, Yugeng S, Jun W, Xinquan W (2013) Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation. J Rare Earths 31:119–123

    Article  Google Scholar 

  • Patel F, Patel S (2013) La1–x Sr x CoO3 (x = 0, 0.2) perovskites type catalyst for carbon monoxide emission control from auto-exhaust. Proc Eng 51:324–329

    Article  CAS  Google Scholar 

  • Pena M, Fierro J (2001) Chemical structures and performance of perovskite oxides. Chem Rev 101:1981–2018

    Article  CAS  Google Scholar 

  • Piccolo L, Becker C, Henry C (1999) Kinetic modeling of the CO oxidation reaction on supported metal clusters. Eur Phys J D Atomic Mol Opt Plasma Phys 9:415–419

    CAS  Google Scholar 

  • Saleh TA (2016) Nanocomposite of carbon nanotubes/silica nanoparticles and their use for adsorption of Pb(II): from surface properties to sorption mechanism. Desalination Water Treat 57:10730–10744

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2011) Functionalization of tungsten oxide into MWCNT and its application for sunlight-induced degradation of rhodamine B. J Colloid Interface Sci 362:337–344

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK (2012) Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J Colloid Interface Sci 371:101–106

    Article  CAS  Google Scholar 

  • Saleh TA, Agarwal S, Gupta VK (2011) Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl Catal B 106:46–53

    CAS  Google Scholar 

  • Singh UG, Li J, Bennett JW, Rappe AM, Seshadri R, Scott SL (2007) A Pd-doped perovskite catalyst, BaCe1−x PdxO3−δ , for CO oxidation. J Catal 249:349–358

    Article  CAS  Google Scholar 

  • Tanaka H, Misono M (2001) Advances in designing perovskite catalysts. Curr Opin Solid State Mater Sci 5:381–387

    Article  CAS  Google Scholar 

  • Tarjomannejad A (2015) Prediction of the liquid vapor pressure using the artificial neural network-group contribution method. Iran J Chem Chem Eng 34:97–111

    Google Scholar 

  • Vannice MA, Joyce WH (2005) Kinetics of catalytic reactions. Springer, Berlin

    Book  Google Scholar 

  • Voorhoeve R, Johnson D, Remeika J, Gallagher P (1977) Perovskite oxides: materials science in catalysis. Science 195:827–833

    Article  CAS  Google Scholar 

  • Wagloehner S, Reichert D, Leon-Sorzano D, Balle P, Geiger B, Kureti S (2008) Kinetic modeling of the oxidation of CO on Fe2O3 catalyst in excess of O2. J Catal 260:305–314

    Article  CAS  Google Scholar 

  • Wang K, Zhong P (2010) A kinetic study of CO oxidation over the perovskite-like oxide LaSrNiO4. J Serb Chem Soc 75:249–258

    Article  CAS  Google Scholar 

  • Xu X, Szanyi J, Xu Q, Goodman DW (1994) Structural and catalytic properties of model silica-supported palladium catalysts: a comparison to single crystal surfaces. Catal Today 21:57–69

    Article  CAS  Google Scholar 

  • Yan X, Huang Q, Li B, Xu X, Chen Y, Zhu S, Shen S (2013) Catalytic performance of LaCo0.5M0.5O3 (M = Mn, Cr, Fe, Ni, Cu) perovskite-type oxides and LaCo0.5Mn0.5O3 supported on cordierite for CO oxidation. J Ind Eng Chem 19:561–565

    Article  CAS  Google Scholar 

  • Yoon JS, Lim Y-S, Choi BH, Hwang HJ (2014) Catalytic activity of perovskite-type doped La0.08Sr0.92Ti1−x M x O3−δ (M = Mn, Fe, and Co) oxides for methane oxidation. Int J Hydrog Energy 39:7955–7962

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Iran Nanotechnology Initiative Council (Grant No. 84870) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Niaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zonouz, P.R., Niaei, A. & Tarjomannejad, A. Kinetic modeling of CO oxidation over La1−x A x Mn0.6Cu0.4O3 (A = Sr and Ce) nanoperovskite-type mixed oxides. Int. J. Environ. Sci. Technol. 13, 1665–1674 (2016). https://doi.org/10.1007/s13762-016-0961-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0961-z

Keywords

Navigation