Skip to main content
Log in

Metal concentrations around thermal power plants, rural and urban areas using honeybees (Apis mellifera L.) as bioindicators

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Honeybees are great bioindicators because they cover wide areas during their foraging activity. Our study included industrial, urban and rural region, where samples were taken in July and September. Industrial region with three apiaries in the area covered two thermal power plants, Kostolac A and B. Two apiaries covered a wide urban region of Belgrade, and the rural region consisting of mainly agricultural–woodland area near village Mesić was covered with one apiary. Aim of this study was to investigate the capability of bees as bioindicators to detect different concentrations of metals in foraging regions, during two sampling periods, and to compare concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Ni, Pb, Sr and Zn found in their bodies. Significant differences were detected for Al, Ba, Cr, Cu, Fe, Li, and Ni between at least two analyzed regions. Significant differences in concentrations between sampling dates were found for Al, Ba, Co, Cr and Fe in at least one of the locations. For Cd, Mn, Na, Pb, Sr and Zn, no significant differences were found between locations or sampling dates, suggesting equal and stable levels of concentration for these elements in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akguc N, Ozyigit II, Yasar U, Leblebici Z, Yarci C (2010) Use of pyracantha coccinea Roem. as a possible biomonitor for the selected heavy metals. Int J Environ Sci Technol 7(3):427–434

    Article  CAS  Google Scholar 

  • Alcon MP, Arola L, Mas A (1991) Response to acute nickel toxicity in rats as a function of sex. Biol Met 4(3):136–140

    Article  CAS  Google Scholar 

  • Bencko V, Wagner V, Wagnerova M, Zavazal V (1986) Human exposure to nickel and cobalt: biological monitoring and immunobiological response. Environ Res 40:399–410

    Article  CAS  Google Scholar 

  • Berg D, Gerlach M, Youdim MB, Double KL, Zecca L, Riederer P, Becker G (2001) Brain iron pathways and their relevance to Parkinson’s disease. J Neurochem 79:225–236

    Article  CAS  Google Scholar 

  • Black J (2006) Review of honeybee nutrition research and practices. Rural Industries Research and Development Corporation, Australia, pp 32–35

    Google Scholar 

  • Bromenshenk JJ, Carlson SR, Simpson JC, Thomas JM (1985) Pollution monitoring of Puget Sound with honeybees. Science 227(4687):632–634

    Article  CAS  Google Scholar 

  • Burge PS, Scott JA, McCoach J (2000) Occupational asthma caused by aluminum. Allergy 55(8):779–780

    Article  CAS  Google Scholar 

  • Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 151(3–4):257–263

    Article  CAS  Google Scholar 

  • Conti ME, Botré F (2001) Honeybees and their products as potential bio-indicators of heavy metal contamination. Environ Monit Assess 69(3):267–282

    Article  CAS  Google Scholar 

  • Cordell D, Rosemarin A, Schröder JJ, Smit AL (2011) Towards global phosphorus security: a systems framework for phosphorus recovery and reuse options. Chemosphere 84(6):747–758

    Article  CAS  Google Scholar 

  • Crane E (1984) Bees, honey and pollen as indicators of metals in the environment. Bee World 65(1):47–49

    Article  Google Scholar 

  • Davison RL, Natusch DFS, Wallace JR, Evans CA Jr (1974) Trace elements in fly ash dependence of concentration on particle size. Environ Sci Technol 8(13):1107–1113

    Article  CAS  Google Scholar 

  • de Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an inter specific rice. J Plant Nutr 28:1–20

    Article  CAS  Google Scholar 

  • Diels L, Van Der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Environ Sci Biotechnol 1(1):75–82

    Article  CAS  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    Article  CAS  Google Scholar 

  • Fakhimzadeh K, Lodenius M (2000) Heavy metals in Finnish honey, pollen and honey bees. Apiacta 35:85–95

    Google Scholar 

  • Fargasova A (2001) Phytotoxic effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. seedling and their accumulation in roots and shoots. Biol Plant 44:471–473

    Article  CAS  Google Scholar 

  • Formicki G, Greń A, Stawarz R, Zyśk B, Gał A (2013) Metal content in honey, propolis, wax, and bee pollen and implications for metal pollution monitoring. Pol J Environ Stud 22(1):99–106

    CAS  Google Scholar 

  • Foy CD, Fleming AL, Burns GR, Armiger WH (1967) Characterization of differential aluminum tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc 31:513–521

    Article  CAS  Google Scholar 

  • Fraga CG (2005) Relevance, essentiality and toxicity of trace elements in human health. Mol Aspects Med 25(4–5):235–244

    Article  CAS  Google Scholar 

  • Free JB, Williams IH, Pinset RJFH, Townshend A, Basi MS, Graham CL (1983) Using foraging honeybees to sample an area for trace metals. Environ Int 9(1):9–12

    Article  CAS  Google Scholar 

  • García-Hernández J, Hurtado LA, Leyva-García G, Güido-Moreno A, Aguilera-Márquez D, Mazzei V, Ferrante M (2015) Isopods of the genus Ligia as potential biomonitors of trace metals from the Gulf of California and pacific coast of the Baja California peninsula. Ecotox Environ Safe 112:177–185

    Article  CAS  Google Scholar 

  • Gonnelli C, Renella G (2013) Chromium and nickel. In: Alloway BJ (ed) Heavy metals in soils, 22. Springer, Netherlands, pp 313–333

    Chapter  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance in three Tuscan populations of Silene paradoxa. Physiol Planta 113:507–514

    Article  CAS  Google Scholar 

  • Goodarzi F (2006) Characteristics and composition of fly ash from Canadian coal-fired power plants. Fuel 85(10–11):1418–1427

    Article  CAS  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266

    Article  CAS  Google Scholar 

  • Ho YB, Tai KM (1988) Elevated levels of lead and other metals in roadside soil and grass and their use to monitor aerial metal depositions in Hong Kong. Environ Pollut 49(1):37–51

    Article  CAS  Google Scholar 

  • Hower JC, Robertson JD, Thomas GA, Wong AS, Schram WH, Graham UM, Rathbone RF, Robl TL (1996) Characterization of fly ash from Kentucky power plants. Fuel 75(4):403–411

    Article  CAS  Google Scholar 

  • Iregren A, Sjogren B, Gustafsson K, Hagman M, Nylén L, Frech W, Andersson M, Ljunggren KG, Wennberg A (2001) Effect on the nervous system in different groups of workers exposed to aluminum. Occup Environ Med 58(7):453–460

    Article  CAS  Google Scholar 

  • Junninen H, Mønster J, Rey M, Cancelinha J, Douglas K, Duane M, Forcina V, Müller A, Lagler F, Marelli L, Borowiak A, Niedzialek J, Paradiz B, Mira-Salama D, Jimenez J, Hansen U, Astorga C, Stanczyk K, Viana M, Querol X, Duvall RM, Norris GA, Tsakovski S, Wåhlin P, Hoŕak J, Larsen BR (2009) Quantifying the impact of residential heating on the urban air quality in a typical European coal combustion region. Environ Sci Technol 43(20):7964–7970

    Article  CAS  Google Scholar 

  • Kaonga CC, Kumwenda J, Mapoma HT (2010) Accumulation of lead, cadmium, manganese, copper and zinc by sludge worms; Tubifex tubifex in sewage sludge. Int J Environ Sci Technol 7(1):119–126

    Article  CAS  Google Scholar 

  • Kauffeld NM (1980) Seasonal cycle of activities in honey bee colonies. Beekeeping in the United States, agriculture handbook 335. USDA, Washington DC, pp 30–32

    Google Scholar 

  • Lee CR, Yoo CI, Lee JH, Kang SK (2002) Nasal septum perforation of welders. Ind Health 40:286–289

    Article  CAS  Google Scholar 

  • Leita L, Muhlbachova G, Cesco S, Barbattini R, Mondini C (1996) Investigation on the use of honeybees and honeybee products to assess heavy metals contamination. Environ Monit Assess 43(1):1–9

    Article  CAS  Google Scholar 

  • Li X, Poon C, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16(11–12):1361–1368

    Article  CAS  Google Scholar 

  • Meij R (1994) Trace element behavior in coal-fired power plants. Fuel Process Technol 39(1–3):199–217

    Article  CAS  Google Scholar 

  • Meij R, Te Winkel H (2007) The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations. Atmos Environ 41(40):9262–9272

    Article  CAS  Google Scholar 

  • Meister RT (2004) Crop protection handbook. Meister Media Worldwide, Willoughby

    Google Scholar 

  • Migula P, Kafel A, Kedziorski A, Marczak G, Nakonieczny M (1991) Heavy metals in nectar flows, products and bees’ tissues from industrialized regions. XXVIIIth Scientific Apicultural Conference, Puławy

  • Mortvedt JJ (1996) Heavy metal contaminants in inorganic and organic fertilizers. Fert Res 43(1–3):55–61

    Article  Google Scholar 

  • Park RM, Stayner LT (2006) A search for thresholds and other nonlinearities in the relationship between hexavalent chromium and lung cancer. Risk Anal 26(1):79–88

    Article  Google Scholar 

  • Pavageau M-P, Pécheyran C, Krupp EM, Morin A, Donard OFX (2002) Volatile metal species in coal combustion flue gas. Environ Sci Technol 36(7):1561–1573

    Article  CAS  Google Scholar 

  • Perugini M, Manera M, Grotta L, Abete MC, Tarasco R (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators. Biol Trace Elem Res 140(2):170–176

    Article  CAS  Google Scholar 

  • Popović A, Đorđević D, Relić D, Mihajlidi-Zelić A (2011) Speciation of trace and major elements from coal combustion products of serbian power plants (I)—“Kostolac A” power plant. Energy Sources Part A 33:1960–1968

    Article  CAS  Google Scholar 

  • Porrini C, Ghini S, Girotti S, Sabatini AG, Gattavecchia E, Celli G (2002) Use of honeybees as bioindicators of environmental pollution in Italy. In: Deville’s J, Pham-Delegate MH (eds) Honey bees: estimating the environmental impact of chemicals. Taylor & Francis, London, New York, pp 186–247

    Google Scholar 

  • Porrini C, Sabatini AG, Girotti S, Ghini S, Medrzycki P, Grillenzoni F, Bortolotti L, Gattavecchia E, Celli G (2003) Honeybees and bee products as monitors of the environmental contamination. Apiacta 38:63–70

    Google Scholar 

  • Pudasainee D, Kim J-H, Lee S-H, Park J-M, Jang H-N, Song G-J, Seo Y-C (2010) Hazardous air pollutants emission from coal and oil-fired power plants. Asia-Pac J Chem Eng 5(2):299–303

    Article  CAS  Google Scholar 

  • Raes H, Cornelis R, Rzeznik U (1992) Distribution, accumulation and depuration of administered lead in adult honeybees. Sci Total Environ 113(3):269–279

    Article  CAS  Google Scholar 

  • Rahman H, Sabreen S, Alam S, Kawai S (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutri 28:393–404

    Article  CAS  Google Scholar 

  • Rakić T, Ilijević K, Lazarević M, Gržetić I, Stevanović V, Stevanović B (2013) The resurrection flowering plant Ramonda nathaliae on serpentine soil–coping with extreme mineral element stress. Flora 208(10–12):618–625

    Google Scholar 

  • Roman A (2005) The influence of environment on accumulation of toxic elements in honey bees’ body. Proc Int Congr Anim Hyg ISAH 2:423–426

    Google Scholar 

  • Roman A (2010) Levels of copper, selenium, lead, and cadmium in forager bees. Pol J Environ Stud 19(3):663–669

    CAS  Google Scholar 

  • Sadeghi A, Mozafari A-A, Bahmani R, Shokri K (2013) Use of honeybees as bio-indicators of environmental pollution in the Kurdistan Province of Iran. J Agric Sci 56(2):83–88

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  CAS  Google Scholar 

  • Silva LT, Pinho JL, Nurusman H (2014) Traffic air pollution monitoring based on an air–water pollutants deposition device. Int J Environ Sci Technol 11(8):2307–2318

    Article  CAS  Google Scholar 

  • Sinha S, Guptha M, Chandra P (1997) Oxidative Stress induced by iron in Hydrilla verticillata (i.f) Royle: response of antioxidants. Ecotoxicol Environ Safe 38:286–291

    Article  CAS  Google Scholar 

  • Smolders E, Mertens J (2013) Cadmium. In: Alloway BJ (ed) Heavy metals in soils, 22. Springer, Netherlands, pp 283–311

    Chapter  Google Scholar 

  • Tong SSC, Morse RA, Bache CA, Lisk DJ (1975) Elemental analysis of honey as an indicator of pollution. Arch Environ Health 30(7):329–332

    Article  CAS  Google Scholar 

  • Ugulu I, Dogan Y, Baslar S, Varol O (2012) Biomonitoring of trace element accumulation in plants growing at Murat Mountain. Int J Environ Sci Technol 9(3):527–534

    Article  CAS  Google Scholar 

  • Van Der Steen JJM, de Kraker J, Grotenhuis T (2012) Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.). Environ Monit Assess 184(7):4119–4126

    Article  CAS  Google Scholar 

  • Walker EMJ, Walker SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30:354–365

    CAS  Google Scholar 

  • Wallwork-Barber MK, Ferenbaugh RW, Gladney ES (1982) The use of honeybees as monitors of environmental pollution. Am Bee J 122:770–772

    Google Scholar 

  • Wang YM, Chen TC, Yeh KJ, Shue MF (2001) Stabilization of an elevated heavy metal contaminated site. J Hazard Mater 88(1):63–74

    Article  CAS  Google Scholar 

  • Westfall DG, Mortvedt JJ, Peterson GA, Gangloff WJ (2005) Efficient and environmentally safe use of micronutrients in agriculture. Commun Soil Sci Plant Anal 36(1–3):169–182

    Article  CAS  Google Scholar 

  • Whiley AJ (2011) Copper and zinc loading associated with automotive brake-pad and tire wear, water quality program. Washington State Department of Ecology Olympia, Washington

    Google Scholar 

  • Wilkinson H (1996) Haemochromatosis associated with arthritis and hypopituitarism. Ann Clin Biochem 333:171–173

    Article  Google Scholar 

  • Zhelyazkova I, Atanasova S, Barakova V, Mihaylova G (2010) Content of heavy metals and metalloids in bees and bee products from areas with different degree of anthropogenic impact. J Agr Sci Technol 3(1):136–142

    Google Scholar 

Download references

Acknowledgments

This paper was realized as part of project No. 176006, which was financed by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zarić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarić, N.M., Ilijević, K., Stanisavljević, L. et al. Metal concentrations around thermal power plants, rural and urban areas using honeybees (Apis mellifera L.) as bioindicators. Int. J. Environ. Sci. Technol. 13, 413–422 (2016). https://doi.org/10.1007/s13762-015-0895-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-015-0895-x

Keywords

Navigation