Skip to main content

Advertisement

Log in

The effect of carbon source on nitrate and ammonium removal from drinking water by immobilised Chlorella sorokiniana

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The feasibility of alginate-immobilised Chlorella sorokiniana for nitrate and ammonium removal from drinking water in regard to carbon source effects was studied in this paper. Three different natural carbon sources were tested in batch experiments with nitrate as nitrogen source: sucrose, grape juice and acacia honey. The nitrate removal efficiencies achieved at 50 mg/L of initial nitrate concentration under sucrose, grape juice and acacia honey were 93, 99 and 94 %, respectively. At 100 mg/L of nitrate, comparable efficiencies were obtained after approximately 3 days, whilst for acacia honey at 50 mg/L, it took only 2 days of cultivation and 3 days for the other two carbon sources. Grape juice and acacia honey showed better performances than sucrose, which must be linked to their chemical compositions. The study of the impact of biosorbent quantity on nitrate removal efficiency showed that sufficient nitrate removal efficiencies could be achieved with a beads/water ratio of 1:6.7 (v/v) or smaller. In addition, the beads’ ages significantly impacted the nitrate removal. The removal of ammonium was studied in the presence of nitrate with acacia honey as carbon source. At the highest concentrations being tested (ammonium-30 mg/L and nitrate-50 mg/L), ammonium was completely removed in <3 days and nitrate by 81 % in 4 days, whereby the suitable beads/water ratio was 1:5. The priority of ammonium assimilation was noticed when compared to nitrate. According to the results, the alginate-immobilised C. sorokiniana represents a promising tool for the removal of nitrogen from drinking water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel Hameed MS (2007) Effect of algal density in bead, bead size and bead concentrations on wastewater nutrient removal. Afr J Biotechnol 6(10):1185–1191

    CAS  Google Scholar 

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275. doi:10.1016/j.sjbs.2012.04.005

    Article  CAS  Google Scholar 

  • Awasthi M (2005) Nitrate reductase activity: a solution to nitrate problems tested in free and Immobilized algal cells in presence of heavy metals. Int J Environ Sci Technol 2:201–206. doi:10.1007/bf03325876

    Article  CAS  Google Scholar 

  • Bischoff H, Bold HC (2003) Psychological studies IV. In: Some soil algae from enchanted rock and related algal species, vol 6318. University Texas Publications

  • Bizaj E (2006) The influence of grape juice composition on the alcoholic fermentation course. Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana

    Google Scholar 

  • Božnar A (2003) Microbiology of honey. V: microbiology of foodstuffs. University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Ljubljana

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. doi:10.1016/j.biotechadv.2011.05.015

    Article  CAS  Google Scholar 

  • Cruz I, Bashan Y, Hernàndez-Carmona G, de-Bashan LE (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 97:9847–9858. doi:10.1007/s00253-013-4703-6

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627. doi:10.1016/j.biortech.2009.09.043

    Article  CAS  Google Scholar 

  • de-Bashan LE, Hernandez J-P, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474. doi:10.1016/j.watres.2003.09.022

    Article  CAS  Google Scholar 

  • de-Bashan LE, Trejo A, Huss VAR, Hernandez J-P, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99:4980–4989. doi:10.1016/j.biortech.2007.09.065

    Article  CAS  Google Scholar 

  • DIN 38 406-E5-1 (1983) Photometric determination of ammonium nitrogen by sodium dichloroisocyanurate and sodium salicylate. DIN—German Institute for Standardization, Berlin, Germany

  • Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87:756–761. doi:10.1016/j.apenergy.2009.09.006

    Article  CAS  Google Scholar 

  • Hernandez J-P, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzym Microb Technol 38:190–198. doi:10.1016/j.enzmictec.2005.06.005

    Article  CAS  Google Scholar 

  • Huang L, Xiang Y, Cai J, Jiang L, Lv Z, Zhang Y, Xu Z (2011) Effects of three main sugars in cane molasses on the production of butyric acid with Clostridium tyrobutyricum. Korean J Chem Eng 28:2312–2315

    Article  CAS  Google Scholar 

  • ISO 6777:1984 (1984) Water quality—determination of nitrite—molecular absorption spectrometric method. International Organization of Standardization, Geneva

    Google Scholar 

  • ISO 7890–1:1986 (1986) Water quality—determination of nitrate—part 1: 2,6-Dimethylphenol spectrometric method. International Organization of Standardization, Geneva

    Google Scholar 

  • ISO 8467:1993 (1993) Water quality—determination of permanganate index. International Organization of Standardization, Geneva

    Google Scholar 

  • Kaonga CC, Chiotha SS, Monjerezi M, Fabiano E, Henry EM (2008) Levels of cadmium, manganese and lead in water and algae; Spirogyra aequinoctialis. Int J Environ Sci Technol 5:471–478. doi:10.1007/bf03326043

    Article  CAS  Google Scholar 

  • Khan M, Yoshida N (2008) Effect of l-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Bioresour Technol 99:575–582. doi:10.1016/j.biortech.2006.12.031

    Article  CAS  Google Scholar 

  • Kim S, Lee Y, Hwang S-J (2013a) Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. Int Biodeterior Biodegrad 85:511–516. doi:10.1016/j.ibiod.2013.05.025

    Article  CAS  Google Scholar 

  • Kim S, Park J-E, Cho Y-B, Hwang S-J (2013b) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresour Technol 144:8–13. doi:10.1016/j.biortech.2013.06.068

    Article  CAS  Google Scholar 

  • Kumar K, Das D (2012) Growth characteristics of Chlorella sorokiniana in airlift and bubble column photobioreactors. Bioresour Technol 116:307–313. doi:10.1016/j.biortech.2012.03.074

    Article  CAS  Google Scholar 

  • Leesing R, Kookkhunthod S (2011) Heterotrophic growth of Chlorella sp. KKU-S2 for lipid production using molasses as a carbon substrate. In: International conference on food engineering and biotechnology, IPCBEE vol 9, pp 87–91

  • Li Y et al (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144. doi:10.1016/j.biortech.2011.01.091

    Article  CAS  Google Scholar 

  • Liu K, Li J, Qiao H, Lin A, Wang G (2012) Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol 114:26–32. doi:10.1016/j.biortech.2012.02.003

    Article  CAS  Google Scholar 

  • Lizzul AM, Hellier P, Purton S, Baganz F, Ladommatos N, Campos L (2014) Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour Technol 151:12–18. doi:10.1016/j.biortech.2013.10.040

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15(4):377–390

    Article  CAS  Google Scholar 

  • Mane PC, Bhosle AB (2011) Bioremoval of some metals by living algae Spirogyra sp. and Spirullina sp. from aqueous solution. Int J Environ Res 6(2):571–576

    Google Scholar 

  • Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metalsolutions by free and immobilized Chlorella vulgaris. Eur J Protistol 37:261–271. doi:10.1078/0932-4739-00813

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964. doi:10.1016/j.biortech.2007.05.040

    Article  CAS  Google Scholar 

  • Ngangkham M, Kumar Ratha S, Prasanna R, Saxena AK, Dhar DW, Sarika C, Narayana Prasad RB (2012) Biochemical modulation of growth, lipid quality and productivity in mixotrophic cultures of Chlorella sorokiniana. Springer Plus 1:33

    Article  Google Scholar 

  • Nussinovitch A (ed) (2010) Polymer macro- and micro-gel beads: fundamentals and applications, XXV edn. Springer, Berlin

    Google Scholar 

  • Olguín EJ, Sánchez-Galván G, González-Portela RE, López-Vela M (2008) Constructed wetland mesocosms for the treatment of diluted sugarcane molasses stillage from ethanol production using Pontederia sagittata. Water Res 42:3659–3666. doi:10.1016/j.watres.2008.05.015

    Article  Google Scholar 

  • Perez-Garcia O, Bashan Y, Puente ME (2011a) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47:190–199. doi:10.1111/j.1529-8817.2010.00934.x

    Article  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011b) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. doi:10.1016/j.watres.2010.08.037

    Article  CAS  Google Scholar 

  • Prathima Devi M, Swamy YV, Venkata Mohan S (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour Technol 142:278–286. doi:10.1016/j.biortech.2013.05.001

    Article  CAS  Google Scholar 

  • Qiao H, Wang G, Zhang X (2009) Isolation and characterization of Chlorella sorokiniana GXNN01 (Chlorophyta) with the properties of heterotrophic and microaerobic growth. J Phycol 45:1153–1162

    Article  Google Scholar 

  • Rashid N, Lee K, Han J, Gross M (2013) Hydrogen production by immobilized Chlorella vulgaris: optimizing pH, carbon source and light. Bioprocess Biosyst Eng 36:867–872. doi:10.1007/s00449-012-0819-9

    Article  CAS  Google Scholar 

  • Rasoul-Amini S et al (2014) Removal of nitrogen and phosphorus from wastewater using microalgae free cells in bath culture system. Biocatal Agric Biotechnol 3:126–131. doi:10.1016/j.bcab.2013.09.003

    Google Scholar 

  • Riaño B, Hernández D, García-González MC (2012) Microalgal-based systems for wastewater treatment: effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng 49:112–117. doi:10.1016/j.ecoleng.2012.08.021

    Article  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64. doi:10.1016/j.biortech.2009.02.076

    Article  CAS  Google Scholar 

  • Shi X-M, Zhang X-W, Chen F (2000) Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzym Microb Technol 27:312–318. doi:10.1016/S0141-0229(00)00208-8

    Article  CAS  Google Scholar 

  • Singh G, Thomas PB (2012) Nutrient removal from membrane bioreactor permeate using microalgae and in a microalgae membrane photoreactor. Bioresour Technol 117:80–85. doi:10.1016/j.biortech.2012.03.125

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2012) Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresour Technol 124:157–162. doi:10.1016/j.biortech.2012.08.037

    Article  CAS  Google Scholar 

  • Sun N, Wang Y, Li Y-T, Huang J-C, Chen F (2008) Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 43:1288–1292. doi:10.1016/j.procbio.2008.07.014

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151. doi:10.1016/S0269-7491(99)00118-9

    Article  CAS  Google Scholar 

  • Tanner W (2000) The Chlorella hexose/H(+)-symporters. Int Rev Cytol 200:101–141

    Article  CAS  Google Scholar 

  • Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilized in polymeric foams. Enzym Microb Technol 17:200–205. doi:10.1016/0141-0229(94)00008-F

    Article  CAS  Google Scholar 

  • Vidotti ADS, Coelho RS, Franco LM, Franco TT (2014) Miniaturized culture for heterotrophic microalgae using low cost carbon sources as a tool to isolate fast and economical strains. Chem Eng Trans 38:325–330

    Google Scholar 

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287. doi:10.1016/j.apenergy.2013.02.059

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Slovenian Research Agency for the financial support (Project No. 1000-11-310131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Petrovič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrovič, A., Simonič, M. The effect of carbon source on nitrate and ammonium removal from drinking water by immobilised Chlorella sorokiniana . Int. J. Environ. Sci. Technol. 12, 3175–3188 (2015). https://doi.org/10.1007/s13762-014-0747-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0747-0

Keywords

Navigation