Skip to main content
Log in

Latitude-dependent underestimation of microbial extracellular enzyme activity in soils

  • Short Communication
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Decomposition of soil organic matter by microorganisms is a major process governing the carbon balance between soil and atmosphere which needs to be fully understood. Extracellular enzyme activity is often the limiting factor for microbial utilization of soil organic matter. Contrary to expectations, we observed that enzymatic activity rises at increasing temperatures in soils and sediments. Current climatic change will induce the increase of global mean temperatures, frequency of extreme heat events and soil temperatures during the next decades. The relevance of the increase in activity at high temperature is dependent on latitude. At latitudes around and below 40° a significant number of days per year present high temperatures. Results suggest that the hydrolytic activity of microbial extracellular enzymes is currently underestimated mainly at medium and low latitudes where soil temperatures frequently reach high values (often above 40 °C). This report contributes to understand (1) the hydrolysis of soil organic matter within a latitude-dependent scenario of global warming and (2) the role of microorganisms in processing soil organic matter and their influence in carbon cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Allison SD, Treseder KK (2008) Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob Change Biol 14:2898–2909

    Article  Google Scholar 

  • Asmar F, Eiland F, Nielsen NE (1994) Effect of extracellular-enzyme activities on solubilisation rate of soil organic nitrogen. Biol Fertil Soils 17:32–38

    Article  CAS  Google Scholar 

  • Bradford MA, Watts BW, Davies CA (2010) Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob Change Biol 16:1576–1588

    Article  Google Scholar 

  • Burton SG, Cowan DA, Woodley JM (2002) The search for the ideal biocatalyst. Nat Biotechnol 20:37–45

    Article  CAS  Google Scholar 

  • Chróst RJ (1992) Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia 243:61–70

    Article  Google Scholar 

  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins F, Hyvönen R, Kirschbaum MUF, Lavallee JM, Leifeld J, Parton WJ, Steinweg JM, Wallenstein MD, Wetterstedt JÅM, Bradford MA (2011) Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404

    Article  Google Scholar 

  • Craine J, Spurr R, McLauchlan R, Fierer N (2010) Landscape-level variation in temperature sensitivity of soil organic carbon decomposition. Soil Biol Biochem 42:373–375

    Article  CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci USA 99:10494–10499

    Article  CAS  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Article  Google Scholar 

  • Fierer N, Colman BP, Schimel JP, Jackson RB (2006) Predicting the temperature dependence of microbial respiration in soil: a continental-scale analysis. Glob Biogeochem Cycles 20:1–10

    Article  Google Scholar 

  • Gonzalez JM, Portillo MC, Belda-Ferre P, Mira A (2012) Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities. PLoS One 7:e29973

    Article  CAS  Google Scholar 

  • Gruber N, Friedlingstein P, Field CB, Valentini R, Heimann M, Richey JE, Lankao PR, Schulze ED, Chen CTA (2004) The vulnerability of the carbon cycle in the 21st century: an assessment of carbon–climate–human interactions. In: Field C, Raupach M (eds) Toward CO2 stabilization: issues, strategies, and consequences. Island Press, Washington

    Google Scholar 

  • IPCC (2007) Climate change 2007: contribution of working group I, II and III to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S et al (eds) Cambridge University Press, Cambridge

  • Ise T, Moorcroft PR (2006) The global-scale temperature and moisture dependencies of soil organic carbon decomposition: an analysis using a mechanistic decomposition model. Biogeochem 80:217–231

    Article  CAS  Google Scholar 

  • Jentsch A, Kreyling J, Beierkuhnlein C (2007) A new generation of climate change experiments: events, not trends. Front Ecol Environ 5:365–374

    Article  Google Scholar 

  • Kalbitz K, Sloinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kube M, Chemikova TN, Al-Ramahi Y, Beloqui A, Lopez-Cortez N, Guazzaroni M-E, Heipieper HJ, Klages S, Kotsyurbenko OR, Langer I, Nechitaylo TY, Lünsdorf H, Fernández M, Juárez S, Ciordia S, Singer A, Kagan O, Egorova O, Petit PA, Stogios P, Kim Y, Tchigvintsev A, Flick R, Denaro R, Genovese M, Albar JP, Reva ON, Martínez-Gomariz M, Tran H, Ferrer M, Savchenko A, Yakunin AF, Yakimov MM, Golyshina OV, Reinhardt R, Golyshin PN (2013) Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nat Commun 4:3156

    Article  Google Scholar 

  • Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivatives as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • Lee RY, Porubsky WP, Feller IC, McKee KL, Joye SB (2008) Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochem 87:181–198

    Article  CAS  Google Scholar 

  • Madigan M, Martinko JM, Parker J (2003) Brock biology of microorganisms. Prentice Hall, New Jersey

    Google Scholar 

  • Marchant R, Banat IM, Rahman TJ, Berzano M (2002) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602

    Article  CAS  Google Scholar 

  • Marchant R, Franzetti A, Pavlostathis SG, Tas DO, Erdbrugger I, Unyayar AH, Mazmanci MA, Banat IM (2008) Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol 78:841–852

    Article  CAS  Google Scholar 

  • Marx M-C, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  Google Scholar 

  • Portillo MC, Santana M, Gonzalez JM (2012) Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften 99:43–53

    Article  CAS  Google Scholar 

  • Santana MM, Portillo MC, Gonzalez JM, Clara I (2013) Characterization of new soil thermophilic bacteria potentially involved in soil fertilization. J Plant Nutr Soil Sci 176:47–56

    Article  CAS  Google Scholar 

  • Smith P, Fang CM, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43

    CAS  Google Scholar 

  • Sokal RR, Rolhf FJ (1995) Biometry, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Stone MM, Weiss MS, Goodale CL, Adams MB, Fernandez IJ, German DP, Allison SD (2012) Temperature sensitivity of soil enzyme kinetics under N-fertilization in two temperate forests. Glob Change Biol 18:1173–1184

    Article  Google Scholar 

  • Tang X-Y, Wu B, Ying H-J, He B-F (2010) Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121. Appl Biochem Biotechnol 160:1017–1031

    Article  CAS  Google Scholar 

  • Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    Article  CAS  Google Scholar 

  • Townsend A, Vitousek PM, Holland EA (1992) Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Clim Change 22:293–303

    Article  CAS  Google Scholar 

  • Velasco-Ayuso S, Guerrero MC, Montes C, López-Archilla AI (2011) Regulation and spatiotemporal patterns of extracellular enzyme activities in a coastal, Sandy aquifer system (Doñana, SW Spain). Microb Ecol 62:162–176

    Article  Google Scholar 

  • Wetterstedt JAM, Persson T, Agren GI (2010) Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Glob Change Biol 16:1806–1819

    Article  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the Spanish Ministry of Science and Innovation, CGL2009-12328/BOS and CSD2009-00006, and the regional government of Andalusia (RNM2529 and BIO288). The participation of FEDER funds in these Projects is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Gonzalez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, J.M., Portillo, M.C. & Piñeiro-Vidal, M. Latitude-dependent underestimation of microbial extracellular enzyme activity in soils. Int. J. Environ. Sci. Technol. 12, 2427–2434 (2015). https://doi.org/10.1007/s13762-014-0635-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0635-7

Keywords

Navigation