Skip to main content
Log in

Online monitoring of the nanoscale zero-valent iron process for trichloroethylene wastewater treatment

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, a batch-type, nanoscale, zero-valent iron process was used to treat trichloroethylene wastewater. Variations in oxidation–reduction potential (ORP) and pH in the reactor were monitored online for use in developing the model for process control. After the addition of nanoscale, zero-valent iron, the pH value increased rapidly, from 5.0–6.0 to around 8.5–9.5, whereas the ORP decreased dramatically, from around 300 mV to −700 to −800 mV. The degradation of trichloroethylene reached equilibrium at a reaction time of about 120 min. The use of a dose of 1.5 g/L to treat an influent that had a trichloroethylene concentration of 50 mg/L resulted in a removal efficiency of 94 %. Two models, i.e., a multiple regression model and an artificial neural network (ANN) model, were used to develop the control model to predict the trichloroethylene removal efficiencies. Both the regression model and the ANN model performed precise prediction results for the trichloroethylene removal efficiencies, with correlation coefficients of about 0.87 and 0.98, respectively, resulting in great potential for controlling the trichloroethylene removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnold WA, Roberts AL (2000) Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ Sci Technol 34:1794–1805

    Article  CAS  Google Scholar 

  • Chang CN, Cheng HB, Chao AC (2004) Applying the Nernst Equation to simulate redox potential variations for biological nitrification and denitrification processes. Environ Sci Technol 38:1807–1812

    Article  CAS  Google Scholar 

  • Cho Y, Choi SI (2010) Degradation of PCE, TCE and 1,1,1-TCA by nanosized FePd bimetallic particles under various experimental conditions. Chemosphere 81:940–945

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • Curteanua S, Piuleaca CG, Godinib K, Azaryanc G (2011) Modeling of electrolysis process in wastewater treatment using different types of neural networks. Chem Eng J 172:267–276

    Article  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  Google Scholar 

  • Dong T, Luo H, Wang Y, Hu B, Chen H (2011) Stabilization of Fe–Pd bimetallic nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para-nitrochlorobenzene in water. Desalination 271:11–19

    Article  CAS  Google Scholar 

  • Dua J, Lub J, Wu Q, Jing C (2012) Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. J Hazard Mater 215–216:152–158

    Article  Google Scholar 

  • Fuerhacker M, Bauer H, Ellinger R, Schmid H, Zibuschka F, Puxbaum H (2000) Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactor. Water Res 34:2499–2506

    Article  CAS  Google Scholar 

  • Gamze TN, Mesci B, Ozgonenel O (2011) The use of artificial neural networks (ANN) for modeling of adsorption of Cu(II) from industrial leachate by pumice. Chem Eng J 171:1091–1097

    Article  Google Scholar 

  • Gernjak W, Fuerhacker M, Fernandez-Ibanez P, Blanco J, Malato S (2006) Solar photo-Fenton treatment—process parameters and process control. Appl Catal B Environ 64:121–130

    Article  CAS  Google Scholar 

  • Ghauch A, Tuqan A, Assi HA (2009) Antibiotic removal from water: elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ Pollut 157:1626–1635

    Article  CAS  Google Scholar 

  • Haest PJ, Springael D, Seuntjens P, Smolders E (2012) Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL. Chemosphere 81:1369–1375

    Article  Google Scholar 

  • He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe–Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34

    Article  CAS  Google Scholar 

  • Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331

    Article  Google Scholar 

  • Khataeea AR, Kasiri MB (2010) Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis. Mol Catal A Chem 331:86–100

    Article  Google Scholar 

  • Li S, Fang Y-L, Romanczuk CD, Jin Z, Li T, Wong MS (2012) Establishing the trichloroethene dechlorination rates of palladium-based catalysts and iron-based reductants. Appl Catal B Environ 125:95–102

    Article  CAS  Google Scholar 

  • Lin YT, Weng CH, Chen FY (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64:26–30

    Article  CAS  Google Scholar 

  • Lin CH, Yu RF, Cheng WP, Liu CR (2012) Monitoring and control of UV and UV-TiO2 disinfections for municipal wastewater reclamation using artificial neural networks. J Hazard Mater 209–210:348–354

    Article  Google Scholar 

  • Liu HB, Chen TH, Chang DY, Chen D, Liu Y, He HP, Yuan P, Frost R (2012) Nitrate reduction over nanoscale zero-valent iron prepared by hydrogen reduction of goethite. Mate Chem Phys 133:205–211

    Article  CAS  Google Scholar 

  • Lookman R, Bastiaens L, Borremans B, Maesen M, Gemoets J, Diels L (2004) Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron. J Contam Hydrol 74:133–144

    Article  CAS  Google Scholar 

  • Lucas MS, Peres JA (2009) Removal of COD from olive mill wastewater by Fenton’s reagent: KINETIC study. J Hazard Mater 168:1253–1259

    Article  CAS  Google Scholar 

  • Martin de la Vega PT, Martinez de Salazar E, Jaramillo MA, Cros J (2012) New contributions to the ORP & DO time profile characterization to improve biological nutrient removal. Bioresour Technol 114:160–167

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053

    Article  CAS  Google Scholar 

  • Moon BH, Park YB, Park KH (2011) Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination 268:249–252

    Article  CAS  Google Scholar 

  • Olsson G (2012) ICA and me—a subjective review. Water Res 46:1585–1624

    Article  CAS  Google Scholar 

  • Ortega-Gomez E, Ubeda JCM, Hervas JDA, Lopez JLC, Jorda LS-J, Perez JAS (2012) Automatic dosage of hydrogen peroxide in solar photo-Fenton plants: development of a control strategy for efficiency enhancement. J Hazard Mater 237–238:223–230

    Article  Google Scholar 

  • Roberts AL, Totten LA, Arnold WA, Burris DR, Campbell TJ (1996) Reductive elimination of chlorinated ethylenes by zero-valent metals. Environ Sci Technol 30:2654–2659

    Article  CAS  Google Scholar 

  • Ryu A, Jeong SW, Jang A, Choi H (2011) Reduction of highly concentrated nitrate using nanoscale zero-valent iron: effects of aggregation and catalyst on reactivity. Appl Catal B Environ 105:128–135

    Article  CAS  Google Scholar 

  • Saby S, Djafer M, Chen GH (2003) Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Res 37:11–20

    Article  CAS  Google Scholar 

  • Shi LN, Zhang X, Chen ZL (2010) Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45:886–892

    Article  Google Scholar 

  • Shu HY, Chang MC, Yu HH, Chen WH (2007) Reduction of an azo dye Acid Black 24 solution using synthesized nanoscale zerovalent iron particles. J Colloid Inter Sci 314:89–97

    Article  CAS  Google Scholar 

  • Shu HY, Chang MC, Chen CC, Chen PE (2010) Using resin supported nano zero-valent iron particles for decoloration of Acid Blue 113 azo dye solution. J Hazard Mater 184:499–505

    Article  CAS  Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membrane Sci 379:131–137

    Article  CAS  Google Scholar 

  • Uzuma C, Shahwan T, Eroglu AE, Lieberwirth I, Scott TB, Hallam KR (2008) Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions. Chem Eng J 144:213–220

    Article  Google Scholar 

  • Wang Q, Jeong S-W, Choi H (2012) Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: direct observation and quantification. J Hazard Mater 213–214:299–310

    Article  Google Scholar 

  • West MR, Grant GP, Gerhard JI, Kueper BH (2008) The influence of precipitate formation on the chemical oxidation of TCE DNAPL with potassium permanganate. Adv Water Res 31:324–338

    Article  CAS  Google Scholar 

  • Won SG, Ra CS (2011) Biological nitrogen removal with a real-time control strategy using moving slope changes of pH(mV)- and ORP-time profiles. Water Res 45:171–178

    Article  CAS  Google Scholar 

  • Yu RF, Liaw SL, Cheng WY, Chang CN (2000) Performance enhancement of SBR applying real-time control. J Environ Eng ASCE 126:943–948

    Article  CAS  Google Scholar 

  • Yu RF, Chen HW, Cheng WP, Shen YC (2009a) Application of pH-ORP titration to dynamically control the chlorination and dechlorination for wastewater reclamation. Desalination 244:164–176

    Article  CAS  Google Scholar 

  • Yu RF, Chen HW, Cheng WP, Hsieh PH (2009b) Dosage control of Fenton process for color removal of textile wastewater applying ORP monitoring and artificial neural network. J Environ Eng ASCE 135:325–332

    Article  CAS  Google Scholar 

  • Zanetti L, Frison N, Nota E, Tomizioli M, Bolzonella D, Fatone F (2012) Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review. Desalination 286:1–7

    Article  CAS  Google Scholar 

  • Zhang X, Lin S, Lu XQ, Chen ZL (2010) Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem Eng J 163:243–248

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 100-2221-E-239-006-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.-F. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, RF., Chi, FH., Cheng, WP. et al. Online monitoring of the nanoscale zero-valent iron process for trichloroethylene wastewater treatment. Int. J. Environ. Sci. Technol. 12, 1647–1656 (2015). https://doi.org/10.1007/s13762-014-0567-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0567-2

Keywords

Navigation