Skip to main content

Advertisement

Log in

Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Synthetic organic compounds are hallmark of modern society. They are ubiquitous ranging from home, workplace to agriculture industry, which leads to their non-judicious dispensing into environment. Unfortunately most of them, especially polychlorinated biphenyls (PCBs), are deemed as persistent organic pollutants posing serious health risks to human. Hence, there is an alarming need of phasing out these chemicals and remediating contaminated sites in eco-friendly manner. Phytoremediation has emerged as a highly promising approach which capitalizes on plants and their associated microorganisms for removal of pollutants from targeted sites. Plant root exudations and secondary metabolites efficiently orchestrate selective recruitment of potential PCB-degrading microbial consortia within the rhizosphere and inside plant tissues. Structural analogy between organic contaminants and secondary plant metabolites (SPMEs) renders possible uptake and subsequent degradation of pollutants by microorganisms. Present review is focused on potential role of plant root exudates and SPMEs in structuring and orchestrating remediation of PCBs within rhizosphere and inside plant tissues. Also, recent developments in tools and techniques to study remediation of organic contaminants with special reference to PCBs are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  Google Scholar 

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47

    Article  Google Scholar 

  • Ahmed M, Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter. Can J Microbiol 19:47–52

    Article  CAS  Google Scholar 

  • Anderson SA, Northcote PT, Page MJ (2010) Spatial and temporal variation of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2010.00869.x

  • Anyasi RO, Atagana HI (2011) Biological remediation of polychlorinated biphenyls (PCBs) in the environment by microorganisms and plants. Afr J Biotechnol 10(82):18916–18938. doi:10.5897/AJB10.557

    Article  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  Google Scholar 

  • Barak T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML, Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol 51:761–768

    CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci. doi:10.1016/j.tplants.2012.04.001

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host–microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155–194

    Article  CAS  Google Scholar 

  • Bruce NC et al (2007) Impact of transgenic tobacco on trinitrotoluene (TNT) contaminates soil community. Environ Sci Technol 41:5854–5861

    Article  Google Scholar 

  • Campanella BF, Bock C, Schroder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs—Potential and limitations. Environ Sci Pollut Res 9:73–85

    Article  CAS  Google Scholar 

  • Capdevila S, Martınez-Granero FM, Sanchez-Contreras M, Rivilla R, Martın M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 150:3889–3897

    Article  CAS  Google Scholar 

  • Casavant NC, Thompson D, Beattie GA, Phillips GJ, Halverson LJ (2003) Use of a site-specific recombination based biosensors for detecting bioavailable toluene and related compounds in roots. Environ Microbiol 5:238–249

    Article  CAS  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci 100:14555–14561

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect. Environ Int 30:799–804

    Article  CAS  Google Scholar 

  • Chen J, Xu QX, Su Y, Shi ZQ, Han FX (2013) Phytoremediation of organic polluted soil. J Bioremediation Biodegradation 4:132

    Google Scholar 

  • Colbert SF, Schroth MN, Weinhold AR, Hendson M (1993) Enhancement of population densities of Pseudomonas putida PpG7 in agricultural ecosystem by selective feeding with carbon source salicylate. Appl Envrion Microbiol 59(7):2064–2070

    CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endo-sphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cubero J, Graham JH (2005) Quantitative real-time polymerase chain reaction for bacterial enumeration and allelic discrimination to differentiate xanthomonas strains on citrus. Bacteriology 95:1333–1340

    CAS  Google Scholar 

  • Damaj M, Ahmad D (1996) Biodegradation of polychlorinated biphenyls by rhizobia: a novel finding. Biochem Biophys Res Commun 218:908–915

    Article  CAS  Google Scholar 

  • Demnerova K, Mackova M, Spevakova V, Beranova K, Kochankova L, Lovecka P et al (2005) Two approaches to biological decontamination of ground-water and soil polluted by aromatics-characterization of microbial populations. Int Microbiol 8:205–211

    CAS  Google Scholar 

  • Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecol 72:313–327

    Article  CAS  Google Scholar 

  • Divya B, Kumar DM (2011) Plant–microbe interaction with enhanced bioremediation. Res J Biotechnol 4(6):72–79

    Google Scholar 

  • Donnelly PK, Hegde RS, Fletcher JS (1994) Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere 28:981–988

    Article  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Dudásová H, Lukácová L, Murínová S, Dercová K (2012) Effects of plant terpenes on biodegradation of polychlorinated biphenyls (PCBs). Int Biodeterior Biodegradation 69:23–27

    Article  Google Scholar 

  • Dunfield KF, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with the field-grown genetically modified canola (Bassica napus). Appl Environ Microbiol 69:7310–7318

    Article  CAS  Google Scholar 

  • Eaton RW (1997) p-Cymene catabolic pathway Pseudomonas putida F1: cloning and characterization of DNA encoding conversion of p-cymene to p-cumate. J Bacteriol 179(10):3171–3180

    CAS  Google Scholar 

  • Fava F, Bertin L, Fedi S, Zannoni D (2003) Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng 81:381–390

    Article  CAS  Google Scholar 

  • Ficko SA, Rutter A, Zeeb BA (2010) Potential for phytoextraction of PCBs from contaminated soils using weeds. Sci Total Environ 408:3469–3476

    Article  CAS  Google Scholar 

  • Field JA, Sierra-Alwarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 1551:1–12

    Article  Google Scholar 

  • Fletcher JS, Hegde RS (1995) Release of phenols by perennial plant roots and their potential importance in bioremediation. Chemosphere 31:3009–3016

    Article  CAS  Google Scholar 

  • Flores HE, Vivanco JM, Loyola-Vargas VM (1999) “Radicle” biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220–226

    Article  Google Scholar 

  • Focht DD (1995) Strategies for the improvement of aerobic metabolism of polychlorinated-biphenyls. Curr Opin Biotechnol 6:341–346

    Article  CAS  Google Scholar 

  • French CE, Rosser SJ, Davis GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494

    Article  CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

    Article  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  Google Scholar 

  • Gilbert ES, Crowley DE (1997) Plants compound that induce polychlorinated biphenyls degradation by Arthrobacter sp. strain B1B. Appl. Environ Microbiol 63:1933-1938

    Google Scholar 

  • Gilbert ES, Crowley DE (1998) Repeated application of carvone-induced bacteria to enhance biodegradation of polychlorinated biphenyls in soil. Appl Microbiol Biotechnol 50:489–494

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Hernandez BS, Koh S-C, Chiral M, Focht DD (1997) Terpene utilizing isolates and their relevance to enhanced biodegradation of polychlorinated biphenyls in soil. Biodegradation 8:153–158

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung undBrache. Arbeiten der Deutschen Landwirtschafts-Gesellschaft 98:59–78

    Google Scholar 

  • Ionescu M, Beranova K, Dudkova V, Kochankova L, Demnerova K, Macek T, Mackova M (2009) Isolation and characterization of different plant associated bacteria and their potential to degrade polychlorinated biphenyls. Int Biodeterior Biodegradation 63:667–672

    Article  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonisation of barley by seed inoculated, herbicide degrading Burkholderia (Pseudomonas) cepacia DB01 (pR0101) in 2, 4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • James CA, Strand SE (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20:237–241

    Article  CAS  Google Scholar 

  • Kang S-W, Kim Y-B, Shim J-D, Kim E-K (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, Sophorolipid. Appl Biochem Biotechnol 160:780–790

    Article  CAS  Google Scholar 

  • Kapur M, Bhatia R, Pandey G, Pandey JD, Jain RK (2010) A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields. Curr Microbiol 61:118–124

    Article  CAS  Google Scholar 

  • Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128

    Article  CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J Agric Food Chem 54:2985–2991

    Article  CAS  Google Scholar 

  • Kim BH, Oh ET, So JS, Ahn Y, Koh SC (2003) Plant terpenes-induced expression of multiple aromatic ring hydroxylation oxygenase genes in Rhodococcus sp. strain T104. J Microbiol 41:349-352

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • LeBlanc PM, Hamelin RC, Filion M (2007) Alteration of soil rhizosphere communities following genetic transformation of white spruce. Appl Environ Microbiol 73:4128–4138

    Article  CAS  Google Scholar 

  • Lee YE, Yang SH, Bae TW, Kang HG, Lim PO, Lee HY (2011) Effects of field-grown genetically modified zoysia grass on bacterial community structure. J Microbiol Biotechnol 21:333–340

    CAS  Google Scholar 

  • Leigh MB, Fletcher JS, Fu X, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  Google Scholar 

  • Liu B, Beuerle T, Klundt T, Beerhues L (2004) Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia. Planta 218:492–496

    Article  CAS  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  Google Scholar 

  • Luo WS, D’Angelo EM, Coyne MS (2007) Plant secondary metabolites, biphenyl and hydroxypropyl-beta-cyclodextrin effects on aerobic polychlorinated biphenyl removal and microbial community structure in soils. Soil Biol Biochem 39:735–743

    Article  CAS  Google Scholar 

  • Macci C, Doni S, Peruzzi E, Ceccanti B, Masciandaro G (2012) Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter. J Environ Monit 14:2710–2717

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  Google Scholar 

  • Maeda M Chung SY, Song E, Kudo T (1995) Multiple genes encoding 2,3- dihydroxybiphenyl 1,2- dioxygenase in the gram positive polychlorinated biphenyls-degrading bacterium Rhodococcus erythropolis TA421, isolated from a termite system. Appl Environ Microbiol 61:549-555

    Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Masciandaro G, Macci C, Peruzzi E, Ceccanti B, Doni S (2013) Organic matter–microorganism–plant in soil bioremediation: a synergic approach. Rev Environ Sci Biotechnol. doi:10.1007/s11157-013-9313-3

  • Meggo RE, Schnoor JL, Hu D (2013) Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. Eniviron Pollut 178:312–321

    Article  CAS  Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Meharg AA, Killham K (2003) A pre-industrial source of dioxins and furans. Nature 421:909–910

    Article  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolimics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  Google Scholar 

  • Nardi S, Concheri G, Pizzeghello D, Sturaro A, Rella R, Parvoli G (2000) Soil organic matter mobilization by root exudates. Chemosphere 5:653–658

    Article  Google Scholar 

  • Newman L, Reynolds C (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8

    Article  CAS  Google Scholar 

  • O’Connell KP, Goodman RM, Handelsman J (1996) Engineering the rhizosphere: expressing a bias. Trends Biotechnol 14:83–88

    Article  Google Scholar 

  • Oh ET, Koh S-C, Kim E, Ahn Y-H, So J-S (2003) Plant terpenes enhance survivability of polychlorinated biphenyls (PCBs) degrading Pseudomonas Pseudoalcaligenes KF707 labeled with gfp in microcosms contaminated with PCB. J Microbiol Biotechnol 13:463-468

    Google Scholar 

  • Park Y-I, So J-S, Koh S-C (1999) Induction by carvone of the polychlorinated biphenyls (PCBs)-degradative pathway in Alcaligenes eutropa H850 and its molecular monitoring. J Microbiol Biotechnol 9:804-810

    Google Scholar 

  • Parmeela, Johri BN (2004) Phylogenetic analysis bacterial endophytes showing anatagonism against Rhizoctonia solani. Curr Sci 8(5):687–692

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy-metal-contaminated land by trees: a review. Environ Int 29:529–540

    Article  CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J (2007) Plant metabolites of polychlorinated biphenyls in hairy root culture of black nightshade Solanum nigrum SNC-9O. Chemosphere 69:1221–1227

    Article  CAS  Google Scholar 

  • Rezek J, Macek T, Mackova M, Triska J, Ruzickova K (2008) Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells. Environ Sci Technol 42:5746–5751

    Article  CAS  Google Scholar 

  • Ryan RP, Ryan D, Dowling DN (2007) Plant protection by the recombinant, root-colonising Pseudomonas fluorescens F113rifPCB strain expressing arsenic resistance: improving rhizoremediation. Lett Appl Microbiol 45(6):668–674

    Article  CAS  Google Scholar 

  • Ryslava E, Krejcik Z, Macek T, Novakova H, Demnerova K, Mackova M (2003) Study of PCB degradation in real contaminated soil. Fresenius Environ Bull 12:296–301

    CAS  Google Scholar 

  • Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of novel plant-produced resource. Nat Biotechnol 15:363–368

    Article  CAS  Google Scholar 

  • Schell MA (1985) Transcriptional control of the nah and sal hydrocarbon- degradation genes from plasmid NAH7. J Bacteriol 26:2049-2057

    Google Scholar 

  • Schmalenberger A, Tebbe CC (2002) Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison on its non-transgenic cltivar Bosphore. FEMS Microbiol 40:29–37

    Article  CAS  Google Scholar 

  • Segura A, Ramos JL (2012) Plant-bacteria interactions in the removal of pollutants. Curr Opion Biotechnol 24:1–7

    Google Scholar 

  • Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16s rRNA genes. FEMS Microbiol Ecol 39:3–32

    Article  Google Scholar 

  • Siciliano S, Fortin N, Himoc A et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475

    Article  CAS  Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54:838–843

    Article  CAS  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  Google Scholar 

  • Singer AC, Thompson IP, Bailey MJ (2004) The tritrophic trinity: a source of pollutant-degrading enzymes and its implications for phytoremediation. Curr Opin Microbiol 7(3):239–244

    Article  CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer K-H, Petersen N (1992) Phylogenetic diversity and identification of nonculturable magnetotactic bacteria. Syst Appl Microbiol 15(1):116–122

    Article  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Sylvestre M, Macek T, Mackova M (2009) Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Curr Opin Biotechnol 20:242–247

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B et al (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation and development of poplar trees. Appl Environ Microbiol 75:748–757

    Article  Google Scholar 

  • Tandlich R, Brezna B, Dercova K (2001) The effect of terpenes on the biodegradation of polychlorinated biphenyls by Pseudomonas stutzeri. Chemosphere 44:1547–1555

    Article  CAS  Google Scholar 

  • Tang, J, Wang, R, Niu X, Wang M, Zhou Q (2010a) Characterization on the rhizoremediation of petroleum contaminated soil as affected by different influencing factors. Biogeosci Discuss 7:4665–4688

    Google Scholar 

  • Toussaint JP, Pham T, Barriault D, Sylvestre M (2012) Plant exudates promote PCB degradation by a Rhodococcal rhizobacteria. Appl Microbiol Biotechnol 95:1589–1603

    Google Scholar 

  • Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christies P (2011a) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186:1438–1444

    Article  CAS  Google Scholar 

  • Tu C, Ying T, Yongming L, Xianghui S, Shaopo D, Zhengao L, Wuxing L, Zhihong X (2011b) PCB removal, soil enzyme activities, and microbial community structures during the phytoremediation by alfalfa in field soils. J Soils Sediments 11:649–656

    Article  CAS  Google Scholar 

  • Uhlik O, Musilova L, Hroudova RM, Vlcek C, Koubek J, Holeckova M, Mackova M, Macek T (2012) Plant secondary metabolites-induced shifts in bacterial community structure and degradative ability in contaminated soil. Appl Micobiol Biotechnol. doi:10.1007/s00253-012-4627-6

  • Van Aken B, Yoon JM, Just CL, Schnoor JL (2004) Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (populus deltoids X populous nigra DN-34). Environ Sci Technol 38:4572–4579

    Article  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Enivron Sci Technol 44:2767–2776

    Article  Google Scholar 

  • Villacieros M, Power B, Sanchez-Contreras M, Lloret J, Oruezabal RI, Martin M (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    Article  CAS  Google Scholar 

  • Walton BT, Hoylman AM, Perez MM, Anderson TA, Johnson TR, Guthrie EA, Christman RF (1994) Rhizosphere microbial communities as a plant defense against toxic substances in soils. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. ACS Symposium Series 563. American Chemical Society, Washington, DC, pp. 82–92

  • Wang G, Gentry T, Grass G, Josephson K, Rensing C, Pepper IL (2004) Real-time PCR quantification of a green fluorescent protein-labelled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil. FEMS Microbiol Lett 233:307–314

    Article  CAS  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2013) Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess. doi:10.1007/s10661-013-3163-x

  • White JC, Ross DW, Gent MPN, Eitzer BD, Mattina MI (2006) Effect of mycorrhizal fungi on the phytoextraction of weathered p, p-DDE by Cucurbita pepo. J Hazard Mater 137:1750–1757

    Article  CAS  Google Scholar 

  • Whiteley AS, Thomson B, Lueders T, Manefield M (2007) RNA-stable isotope probing. Nat Protoc 2:838–844

    Article  CAS  Google Scholar 

  • Wolenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290:2088–2093

    Article  Google Scholar 

Download references

Acknowledgments

Corresponding author thanks Department of Science and Technology, India, for financial support as DST, women scientist, DST No. SR/WOS-A/LS-275/2011 (G). Authors thank Prof. B.N. Johri for critical reading, valuable comments and suggestions on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, P., Panwar, J. & Jha, P.N. Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int. J. Environ. Sci. Technol. 12, 789–802 (2015). https://doi.org/10.1007/s13762-014-0515-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0515-1

Keywords

Navigation