Skip to main content

Advertisement

Log in

Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Dyes are synthetic organic compounds widely used in various industries such as, textile, leather, plastic, food, pharmaceutical, and paints manufacturing industries. Coloured effluents are highly toxic to the aquatic life and mutagenic to humans. Wastewater containing dyes has become an important issue demanding serious attention. Among the synthetic dyes, azo dyes are the largest and most widely used dyes and account for more than half of the annually produced dyes. The biodegradation of azo dyes is difficult due to their complex structure and synthetic nature. Several treatments have been proposed for efficient azo dye removal, most of them presenting some limitations such as generation of waste sludge, high operational costs, poor efficiency, and incomplete mineralization. Biological treatment is a cost-effective and eco-friendly process for dye degradation. Sequential anaerobic–aerobic biological treatment is considered as one of the most cost-effective methods for the complete mineralization of azo dyes. The anaerobic stage yields decolourization through reductive cleavage of the dye’s azo linkages, resulting in the formation of generally colourless but potentially hazardous aromatic amines. The aerobic stage involves degradation of the aromatic amines. It is the most logical step for removing the azo dyes from the wastewater. Several factors can influence the microbial activity and consequently the efficacy and effectiveness of the complete biodegradation processes. This paper summarizes the results of biological decolourization of azo dyes using various types of reactors, elaborates biochemical mechanisms involved, and discusses influence of various operational parameters on decolourization based on reports published in the last decade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adinew B (2012) Textile effluent treatment and decolonization techniques—a review. Bulg J Sci Educ 21:434–456

    CAS  Google Scholar 

  • Albuquerque M, Lopes A, Serralheirob M, Novaisa J, Pinheiroa H (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic–aerobic sequencing batch reactors. Enzyme Microb Technol 36:790–799

    Article  CAS  Google Scholar 

  • Ali H (2010) Biodegradation of synthetic dyes—a review. Water Air Soil Pollut 213:251–273. doi:10.1007/s11270-010-0382-4

    Article  CAS  Google Scholar 

  • Amin N (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223:152–161

    Article  CAS  Google Scholar 

  • Anjaneyulu Y, Chary NS, Raj D (2005) Decolourization of industrial effluents—available methods and emerging technologies—a review. Rev Environ Sci Biotechnol 4:245–273

    Article  CAS  Google Scholar 

  • Barraga B, Costa C, Marquez M (2007) Biodegradation of azo dyes by bacteria inoculated on solid media. Dyes Pigm 75:73–81

    Article  Google Scholar 

  • Bonakdarpour B, Vyrides I, Stuckey D (2011) Comparison of the performance of one stage and two stage sequential anaerobic aerobic biological processes for the treatment of reactive azo dye containing synthetic wastewaters. Int Biodeterior Biodgrad 65:591–599

    Article  CAS  Google Scholar 

  • Boonyakamol A, Imai T, Chairattanamamokom P, Higuchi T, Sekine M (2009) Key factors regarding decolourization of synthetic and anthraquinone and azo dyes. Appl Biochem Biotechnol 158:180–191. doi:10.1007/s12010-008-8330-0

    Article  CAS  Google Scholar 

  • Carvalho M, Pereira C et al (2008) Assessment of the biodegradability of a monosulfonated azo dye and aromatic amines. Int Biodeterior Biodgrad 64:676–681

    Google Scholar 

  • Chengalroyen M, Dabbs E (2013) The microbial degradation of azo dyes: a mini review. World J Microbiol Biotechnol 29:389–399. doi:10.1007/s11274-012-1198-8

    Article  CAS  Google Scholar 

  • Chequer F, Dortaz D, Oliveira D (2011) Azo dyes and their metabolites: Does the discharge of the azo dyes into water bodies represent Human and Ecological risks? In: Hauser P (ed) Advances in treating textile effluents, ISBN: 978-953-307-704-8, In Tech. http://www.intechopen.com/download/get/type/pdfs/id/22392

  • Chou W, Wang C, Cheng-ping C (2011) Comparison of removal of Acid Orange 7 by electrooxidation using various anode materials. Desalination 266:201–207

    Article  CAS  Google Scholar 

  • Cinar O, Yasar S et al (2008) Effect of cycle time on biodegradation of azo dye in sequencing batch reactor. Process Saf Environ 86:455–460

    Article  CAS  Google Scholar 

  • Cirik K, Kitis M, Cinar O (2012) The effect of biological sulfate reduction on anaerobic color removal in anaerobic–aerobic sequencing batch reactors. Bioprocess Biosyst Eng. doi:10.1007/s00449-012-0813-2

    Google Scholar 

  • Costa C, Montilla F, Morallon E, Oliyi P (2009) Electrochemical oxidation of acid black 210 dyes on the boron dopes diamond electrode in the presence of phosphate ions: effect of current density, pH and chloride ions. Electrochim Acta 54:7048–7055

    Article  CAS  Google Scholar 

  • Da Silva M, Firmino P, De Sousa M, Dos Santos A (2012) Sequential anaerobic/aerobic treatment of dye—containing wastewaters: colour and COD removals and Ecotoxicity tests. Appl Biochem Biotechnol 166:1057–1069

    Article  Google Scholar 

  • Daneshvar N, Oladegaragoze A, Djafarzadeh N (2007) Decolourization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. J Hazard Mater 129:116–124

    Article  Google Scholar 

  • Daneshwar N, Salari D, Khataee A (2003) Photocatalytic degradation of azo dye Acid Red 14 in water: investigation of the effect of operational parameters. J Photochem Photobiol A 157:111–116

    Article  Google Scholar 

  • Dos Santos A, Cervantes F, Vanlier J (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385

    Article  Google Scholar 

  • Forgacs E, Cserhatia T, Oros G (2004) Removal of synthetic dyes from wastewaters: a review. Environ Int 30:953–971

    Article  CAS  Google Scholar 

  • Franciscon E, Zille A et al (2009) Microperophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. Strain VN-31. Process Biochem 44:446–452

    Article  CAS  Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolourization of dye wastewaters: a review. Bioresour Technol 79:251–262

    Article  CAS  Google Scholar 

  • Golob V, Vinder A, Simonic M (2005) Efficiency of the coagulation/flocculation method for the treatment of dye bath effluents. Dyes Pigm 67:93–97

    Article  CAS  Google Scholar 

  • Gutowska A, Czaplinska J, Jozwiak W (2007) Degradation mechanism of reactive orange 113 dye by H2O2/Fe2+ and ozone in aqueous solution. Dyes Pigm 74:41–48

    Article  CAS  Google Scholar 

  • Hakimelahi M, Moghaddam M, Hashemi S (2012) Biological treatment of wastewater containing an azo dye using mixed culture in alternating anaerobic/aerobic sequencing batch reactors. Biotechnol Bioproc Eng 17:875–880. doi:10.1007/s12257-011-0673-7

    Article  CAS  Google Scholar 

  • Hao O, Kim H, Chiang P (2000) Decolourization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    Article  CAS  Google Scholar 

  • Hunger K (2009) Industrial dyes—chemistry, properties, applications. Wiley-VCH, Germany

    Google Scholar 

  • Inaloo KD, Naddafi K, Mesdaghinia AR, Nasseri S, Nodehi RN, Rahimi A (2011) Optimization of operational parameters for decolorizatoin and degradation of C. I. Reactive Blue 29 by ozone. Iran J Environ Health Sci Eng 8(227):234

    Google Scholar 

  • Iqbal M (2008) Textile dyes. Rehbar, Karachi

    Google Scholar 

  • Isik M, Sponza D (2004) Monitoring of toxicity and intermediated of C.I Direct Black 38 azo dye through decolorization in an anaerobic/aeroic sequential reactor system. J Hazard Mater 114:29–39

    Article  CAS  Google Scholar 

  • Isik M, Sponza D (2006) Biological treatment of acid dyeing wastewater using a sequential anaerobic/aerobic reactor system. Enzyme Microb Technol 38:887–892

    Article  CAS  Google Scholar 

  • Johnstrup M, Kumar N, Murto M, Mattiasson B (2011) sequential anaerobic–aerobic treatment of azo dyes: decolourisation and amine degradability. Desalination 280:339–346

    Article  Google Scholar 

  • Kapdan I, Oztekin R (2006) The effect of hydraulic residence time and initial COD concentration on color and COD removal performance of the anaerobic–aerobic SBR system. J Hazard Mater 136:896–901

    Article  CAS  Google Scholar 

  • Karatas M, Dursun S, Argun M (2009) Decolorization of reactive dyes under batch anaerobic condition by mixed microbial culture. Afr J Biotechnol 8:6856–6862

    CAS  Google Scholar 

  • Karatas M, Dursun S, Argun M (2010) The decolourisation of azo dye Reactive Black 5 in a sequential anaerobic–aerobic system. Ekoloji 19(74):15–23

    CAS  Google Scholar 

  • Khan H, Ahmad N, Yasar A, Shahid R (2010) Advanced oxidative decolourization of red ci-5B: effects of dye concentration, process optimization and reaction kinetics. Polish J Environ Stud 19:83–92

    CAS  Google Scholar 

  • Khan R, Bhawana P, Fulekar M (2013) Microbial decolorization and degradation of synthetic dyes: a review. Rev Environ Sci Biotechnol 12:75–97

    Article  CAS  Google Scholar 

  • Khehra M, Saini H et al (2006) Biodegradation of azo dye C.I. Acid Red 88 by an anoxic–aerobic sequential bioreactor. Dyes Pigm 70:1–7

    Article  CAS  Google Scholar 

  • Koprivanac N, Kusic H (2009) Hazardous organic pollutants in colored wastewaters. Nova Science, New York

    Google Scholar 

  • Koupaie E, Alavi Moghaddam M, Hashemi S (2011) Post treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines. J Hazard Mater 195:147–154

    Article  Google Scholar 

  • Koupaie E, Alavi Moghaddam M, Hashemi S (2012) Investigation of decolourization kinetics and biodegration of azo dye Acid Red 18 using sequencing process of anaerobic sequencing batch reactor/moving bed sequencing batch biofilm reactor. Int Biodeterior Biodgrad 71:43–49

    Article  Google Scholar 

  • Koupaie E, Alavi Moghaddam M, Hashemi S (2013) Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolonization and biodegradation of azo dye Acid Red 18: comparison of using two types of packing media. Bioresour Technol 127:415–421

    Article  Google Scholar 

  • Laowansiri S, Vinitnantharat S, Chaipraser P, Ha S (2008) Anaerobic degradation kinetics of reactive dye with different carbon sources. J Environ Biol 29:309–314

    CAS  Google Scholar 

  • Libra J, Borchert M, Vigelahn L, Strom T (2004) Two stage biological treatment of a diazo reactive textile dye and the fate of the dye metabolites. Chemosphere 56:167–180

    Article  CAS  Google Scholar 

  • Lourenco N, Novais J, Pinheiro H (2001) Effect of some operational parameters on textile dye biodegradation in a sequencing batch reactor. J Biotechnol 89:163–174

    Article  CAS  Google Scholar 

  • Malik P (2003) Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigm 56:239–249

    Article  CAS  Google Scholar 

  • Manu B, Chaudhari S (2002) Anaerobic decolorization of simulated textile wastewater containing azo dyes. Bioresour Technol 82:225–231

    Article  CAS  Google Scholar 

  • Martinez-Huitle C, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a General review. Appl Catal B 87:105–145

    Article  CAS  Google Scholar 

  • Mashkour M, Al-Kaim A, Ahmed M, Hussein F (2011) Zinc oxide assisted photocatalytic decolourization of Reactive Red 2 dye. Int J Chem Sci 9:969–979

    CAS  Google Scholar 

  • Melgoza R, Buitron C (2004) Anaerobic/aerobic treatment of colorants present in textile effluents. Water Sci Technol 50:149–155

    CAS  Google Scholar 

  • Mendez-Paz D, Omil F, Lema J (2005) Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Enzyme Microb Technol 36:264–272

    Article  CAS  Google Scholar 

  • Meric S, Selcuk H, Gallo M, Belgiorno V (2005) Decolourization and detoxifying of Remazol Red and its mixture using Fenton’s reagent. Desalination 173:239–248

    Article  CAS  Google Scholar 

  • Mezohegyi G, Kolodkin A, Castr U, Bengoa C, Stuber F, Font J, Fabregat A (2007) Effective anaerobic decolourization of azo dye Acid Orange 7 in continuous upflow packed bed reactor using biological activated carbon system. Ind Eng Chem Res 46:6788–6792

    Article  CAS  Google Scholar 

  • Mohanty S, Dafale N, Rao N (2006) Microbial decolourization of reactive black 5 in a two-stage anaerobic–aerobic reactor using acclimatized activated textile sludge. Biodegradation 17:403–413

    Article  CAS  Google Scholar 

  • Montano J, Domenche X, Hortal G, Torrades F, Peral J (2008) The testing of several biological and chemical coupled treatments for Cibacron Red FN-R azo dye removal. J Hazard Mater 154:484–490

    Article  Google Scholar 

  • Mutambanengwe C, Togo C, Whiteley C (2007) Decolourization and degradation of textile dyes with biosulfidogenichydrogenases. Biotechnol Prog 23:1095–1100

    CAS  Google Scholar 

  • Naimabadi A, Attar H, Shahsavani A (2009) Decolorization and biological degradation of azo dye Reactive Red 2 by anaerobic/aerobic sequential process. Iran J Environ Health Sci Eng 6:67–72

    CAS  Google Scholar 

  • O’Neill C, Hawkes F, Hawkes D, Esteves S, Wilcox S (2000) Anaerobic–aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Res 34:2355–2361

    Article  Google Scholar 

  • Oh Y, Kim Y et al (2004) Colour removal of real textile wastewater by sequential anaerobic and aerobic reactors. Biotechnol Bioproc Eng 9:419–422

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sanchez-perez J (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409:4141–4166

    Article  CAS  Google Scholar 

  • Ong S, Li H, Wong Y, Raman K (2012) Performance and kinetic study on bioremediation of diazo dye Reactive Black 5 in wastewater using spent GAC-Biofilm sequencing batch reactor. Water Air Soil Pollut 223:1615–1623

    Article  CAS  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Review: bacterial decolourization and degradation of azo dyes. Int Biodeterior Biodgrad 59:73–84

    Article  CAS  Google Scholar 

  • Panswad T, Luangdilok W (2000) Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water Res 34:4177–4184

    Article  CAS  Google Scholar 

  • Patel T, Nath K (2012) Comparative performance of flat sheet and spiral wound modules in the nanofiltration of reactive dye solution. Env Sci Pollution Res 19:2994–3004

    Article  CAS  Google Scholar 

  • Patel U, Ruparelia J, Patel M (2011) Electrocoagulation treatment of simulated floor-wash containing Reactive Black 5 using iron sacrificial anode. J Hazard Mater 197:128–136

    Article  CAS  Google Scholar 

  • Petrinic I, Andersen N, Sostar-turk S, Le Marechal M (2007) The removal of reactive dye printing compound using nanofiltration. Dyes Pigm 74:512–518

    Article  CAS  Google Scholar 

  • Phalakornkule C, Polgumhang S, Tongdaung W, Karakat B, Nuyut T (2010) Electrocoagulations of blue reactive, red disperse and mixed dyes, and application in treating textile effluent. J Environ Manag 91:918–926

    Article  CAS  Google Scholar 

  • Puvaneshwari N, Muthukrishnan J, Gunasekaran P (2006) Toxicity assessment and microbial degradation of azo dyes. Indian J Exp Biol 44:618–626

    Google Scholar 

  • Rai H, Bhattacharya M et al (2005) Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol 35:219–238

    Article  CAS  Google Scholar 

  • Rajaguru P, Kaileselvi K, Palanivel M, Subburum V (2000) Biodegradation of azo dyes in sequential anaerobic–aerobic system. Appl Microbial Biotechnol 54:268–273

    Article  CAS  Google Scholar 

  • Rauf M, Salman Ashraf S (2012) Review: survey of recent trends in biochemically assisted degradation of dyes. Chem Eng J 209:520–530

    Article  CAS  Google Scholar 

  • Robinson T, Mcmullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247–255

    Article  CAS  Google Scholar 

  • Sandhya S, Padmavathy S, Swaminathan K, Subrahmanyam Y, Kaul S (2005) Microaerophilic–aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater. Proc Biochem 40:885–890

    Article  CAS  Google Scholar 

  • Saratale R, Saratale G, Chang J, Govindwar S (2011) Bacterial decolourization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157

    Article  CAS  Google Scholar 

  • Sen S, Demierer G (2003) Anaerobic treatment of synthetic textile wastewater containing a reactive azo dye. J Environ Eng 129:595–601

    Article  CAS  Google Scholar 

  • Senthikumar S, Bashab C, Perumalsamya M, Prabhua H (2012) Electrochemical oxidation and aerobic biodegradation with isolated bacterial strains for dye wastewater. Electrochim Acta 77:171–178

    Article  Google Scholar 

  • Sharma BK (2011) Industrial chemistry. Goel Publishing House, India

    Google Scholar 

  • Shaw C, Carliell C, Wheatley A (2002) Anaerobic/aerobic treatment of coloured textile effluents using sequencing batch reactors. Water Res 36:1993–2001

    Article  CAS  Google Scholar 

  • Solis M, Solis A, Perez H, Manjarrezb N, Floresa M (2012) Microbial decolouration of azo dyes: a review. Process Biochem 47:1723–1748

    Article  CAS  Google Scholar 

  • Spagni A, Grilli S, Casu S, Mattioli D (2010) Treatment of a simulated textile wastewater containing the azo-dye Reactive Orange 16 in an anaerobic-biofilm anoxic–aerobic membrane bioreactor. Int Biodeterior Biodgrad 64:676–681

    Article  CAS  Google Scholar 

  • Sponza D, Isik M (2002) Decolourization and azo dye degradation by anaerobic/aerobic sequential process. Enzyme Microb Technol 31:102–110

    Article  CAS  Google Scholar 

  • Sponza D, Isik M (2004) Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge. Enzyme Microb Technol 34:147–158

    Article  CAS  Google Scholar 

  • Sponza D, Isik M (2005) Reactor performances and fate of aromatic amines through decolorization of Direct Black 38 dye under anaerobic/aerobic sequentials. Process Biochem 40:35–44

    Article  CAS  Google Scholar 

  • Supaka N, Juntongjin K, Damronglerd S, Delia M, Strehaiano P (2004) Microbial decolorization of reactive azo dyes in a sequential anaerobic–aerobic system. Chem Eng J 99:169–176

    Article  CAS  Google Scholar 

  • Talarposhti A, Donnelly T, Andersonm G (2001) Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Res 35:425–432

    Article  CAS  Google Scholar 

  • Taplad T, Neramittagapong A, Neramittagapong S, Boonmee M (2008) Degradation of Congo Red dye by ozonation. Chiang Mai J Sci 35:63–68

    Google Scholar 

  • Tan CG, Leewen A, VanVoorthuizen E et al (2005) Fate and biodegradation of sulfonated aromatic amines. Biodegradation 16:527–537

    Google Scholar 

  • Uliana C, Garbellini G, Yamanaka H (2012) Electrochemical reduction of disperse orange 1 textile dye at a boron-doped diamond electrode. J Appl Electrochem 42:297–304

    Article  CAS  Google Scholar 

  • Vanderzee F, Cervantes F (2009) Impact and application of electron shuttles on the redox (bio) transformation of contaminants: a review. Biotechnol Adv 27:256–277

    Article  CAS  Google Scholar 

  • Vanderzee F, Villaverde S (2005) Combined anaerobic–aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res 39:1425–1440

    Article  CAS  Google Scholar 

  • Vanderzee F, Lettinga G, Field J (2001) Anaerobic decolourization by granular sludge. Chemoshere 44(1169):1176

    Google Scholar 

  • Vanderzee F, Bisschops L, Blanchardb VG, Bouwman R, Lettinga G, Field J (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109

    Article  CAS  Google Scholar 

  • Velmurugan P, Kumar R, Dhinakaran G (2011) Dye removal from aqueous solution using low cost adsorbent. Int J Envrion Sci 1:1493–1503

    Google Scholar 

  • Vijaya P, Sandhya S (2003) Decolourization and complete degradation of methyl red by a mixed culture. Environmentalist 23:145–149

    Article  Google Scholar 

  • Wang C, Yedilar A, Lienert D, Wang Z, Kettrup A (2002) Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio Fischeri. Chemosphere 46:339–344

    Article  CAS  Google Scholar 

  • Wong P, Tow T, Abdul Rahman N (2007) Efficiency of the coagulation-flocculation method for the treatment of dye mixtures containing disperse and reactive dyes. Water Qual Res J Canada 42:1

    Google Scholar 

  • Yasar S, Cirik K, Cinar O (2012) The effect of cyclic anaerobic–aerobic conditions on biodegradation of azo dyes. Bioproc Biosyst Eng 35:449–457. doi:10.1007/s00449-011-0584-1

    Article  CAS  Google Scholar 

  • You S, Teng J (2009) Anaerobic decolourization bacteria for the treatment of azo dye in a sequential anaerobic and aerobic membrane bioreactor. J Taiwan Inst Chem Eng 40:500–504

    Article  CAS  Google Scholar 

  • Young-kim S, Young-An J, Wookim B (2007) Improvement of the decolourization of azo dye by anaerobic sludge bioaugmented with Desulfovibrio desulfuricans. Biotechnol Bioprocess Eng 12:222–227

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra. D. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popli, S., Patel, U.D. Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int. J. Environ. Sci. Technol. 12, 405–420 (2015). https://doi.org/10.1007/s13762-014-0499-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0499-x

Keywords

Navigation