Skip to main content
Log in

Cadmium (II)-selective electrode based on palm shell activated carbon modified with task-specific ionic liquid: kinetics and analytical applications

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In this study, palm shell activated carbon modified with task-specific ionic liquid was used as a novel electrode component for the potentiometric determination of cadmium ions in water samples. The proposed potentiometric sensor has good operating characteristics, including relatively high selectivity towards the Cd (II) ion, a Nernstian response to Cd (II) ions in a working concentration range of 1.0 × 10−9–1.0 × 10−2 M, with a reasonable detection limit of 1 × 10−10 M and a slope of 30.90 ± 1.0 mV/decade. No significant changes in electrode potential were observed when the pH was varied over the range of 4–9. A direct technique based on the use of ion-selective electrode potentiometry has been developed in our laboratory for the study of reaction kinetics and kinetic methods of analysis by continuous monitoring of the rate of production or consumption of an ion. The apparent adsorption rate constant was estimated assuming pseudo-second-order kinetics. Additionally, the proposed electrode has been successfully used for the determination of the cadmium content in real samples without a significant interaction from other cationic or anionic species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbastabar-Ahangar H, Shirzadmehr A, Marjani K, Khoshsafar H, Chaloosi M, Mohammadi L (2009) Ion-selective carbon paste electrode based on new tripodal ligand for determination of cadmium (II). J Incl Phenom Macrocycl Chem 63(3):287–293. doi:10.1007/s10847-008-9519-0

    Article  CAS  Google Scholar 

  • Afkhami A, Madrakian T, Siampour H (2006) Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents. J Hazard Mater 138(2):269–272. doi:10.1016/j.jhazmat.2006.03.073

    Article  CAS  Google Scholar 

  • Balarama Krishna MV, Shekhar R, Karunasagar D, Arunachalam J (2000) Multi-element characterization of high purity cadmium using inductively coupled plasma quadrupole mass spectrometry and glow-discharge quadrupole mass spectrometry. Anal Chim Acta 408(1–2):199–207. doi:10.1016/s0003-2670(99)00860-0

    Article  CAS  Google Scholar 

  • Beiraghi A, Babaee S, Roshdi M (2012) Simultaneous preconcentration of cadmium, cobalt and nickel in water samples by cationic micellar precipitation and their determination by inductively coupled plasma-optical emission spectrometry. Microchem J 100:66–71. doi:10.1016/j.microc.2011.09.003

    Article  CAS  Google Scholar 

  • Buck RP, Lindner E (1994) Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem 66(12):2527–2536. doi:10.1351/pac199466122527

    Article  CAS  Google Scholar 

  • Dizadji N, Abootalebi Anaraki N (2011) Adsorption of chromium and copper in aqueous solutions using tea residue. Int J Environ Sci Technol 8(3):631–638

    Article  CAS  Google Scholar 

  • Egorov VM, Smirnova SV, Pletnev IV (2008) Highly efficient extraction of phenols and aromatic amines into novel ionic liquids incorporating quaternary ammonium cation. Sep Purif Technol 63(3):710–715. doi:10.1016/j.seppur.2008.06.024

    Article  CAS  Google Scholar 

  • Ensafi AA, Meghdadi S, Sedighi S (2009) Sensitive cadmium potentiometric sensor based on 4-hydroxy salophen as a fast tool for water samples analysis. Desalination 242(1–3):336–345. doi:10.1016/j.desal.2008.06.002

    Article  CAS  Google Scholar 

  • Faridbod F, Ganjali MR, Larijani B, Norouzi P (2009) Multi-walled carbon nanotubes (MWCNTs) and room temperature ionic liquids (RTILs) carbon paste Er(III) sensor based on a new derivative of dansyl chloride. Electrochim Acta 55(1):234–239. doi:10.1016/j.electacta.2009.08.044

    Article  CAS  Google Scholar 

  • Gadzekpo VPY, Christian GD (1984) Determination of selectivity coefficients of ion-selective electrodes by a matched-potential method. Anal Chim Acta 164:279–282. doi:10.1016/s0003-2670(00)85640-8

    Article  CAS  Google Scholar 

  • Guo W, Hu S, Xiao Y, Zhang H, Xie X (2010) Direct determination of trace cadmium in environmental samples by dynamic reaction cell inductively coupled plasma mass spectrometry. Chemosphere 81(11):1463–1468. doi:10.1016/j.chemosphere.2010.08.056

    Article  CAS  Google Scholar 

  • Gupta VK, Jain AK, Kumar P (2006) PVC-based membranes of dicyclohexano-24-crown-8 as Cd(II) selective sensor. Electrochim Acta 52(2):736–741. doi:10.1016/j.electacta.2006.06.009

    Article  CAS  Google Scholar 

  • Gupta VK, Singh AK, Gupta B (2007) Schiff bases as cadmium(II) selective ionophores in polymeric membrane electrodes. Anal Chim Acta 583(2):340–348. doi:10.1016/j.aca.2006.10.039

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. doi:10.1016/s0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Igwe JC, Abia AA, Ibeh CA (2008) Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int J Environ Sci Technol 5(1):83–92

    Article  CAS  Google Scholar 

  • James HDJ (2004) Task-specific ionic liquids. Chem Lett 33(9):1072–1077. doi:10.1246/cl.2004.1072

    Article  Google Scholar 

  • Khamjumphol U, Watchasit S, Suksai C, Janrungroatsakul W, Boonchiangma S, Tuntulani T, Ngeontae W (2011) New polymeric membrane cadmium(II)-selective electrodes using tripodal amine based ionophores. Anal Chim Acta 704(1–2):73–86. doi:10.1016/j.aca.2011.08.005

    Article  CAS  Google Scholar 

  • Khani H, Rofouei MK, Arab P, Gupta VK, Vafaei Z (2010) Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II). J Hazard Mater 183(1–3):402–409. doi:10.1016/j.jhazmat.2010.07.039

    Article  CAS  Google Scholar 

  • Li S, Cai S, Hu W, Chen H, Liu H (2009) Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochim Acta, Part B 64(7):666–671. doi:10.1016/j.sab.2009.05.023

    Article  CAS  Google Scholar 

  • Onundi YB, Mamun AA, Khatib MFA, Ahmed YM (2010) Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int J Environ Sci Technol 7(4):751–758

    Article  CAS  Google Scholar 

  • Peng B, Zhu J, Liu X, Qin Y (2008) Potentiometric response of ion-selective membranes with ionic liquids as ion-exchanger and plasticizer. Sens Act B Chem 133(1):308–314. doi:10.1016/j.snb.2008.02.027

    Article  CAS  Google Scholar 

  • Rezaei B, Meghdadi S, Bagherpour S (2008a) Cadmium selective PVC-membranes sensor based on 1, 2-Bis (Quinoline-2-Carboxamido) -4-Chlorobenzene as a neutral carrier. IEEE Sens J 8(8):1469–1477. doi:10.1109/JSEN.2008.920719

    Article  CAS  Google Scholar 

  • Rezaei B, Meghdadi S, Zarandi RF (2008b) A fast response cadmium-selective polymeric membrane electrode based on N, N′-(4-methyl-1,2-phenylene)diquinoline-2-carboxamide as a new neutral carrier. J Hazard Mater 153(1–2):179–186. doi:10.1016/j.jhazmat.2007.08.033

    Article  CAS  Google Scholar 

  • Shamsipur M, Mashhadizadeh MH (2001) Cadmium ion-selective electrode based on tetrathia-12-crown-4. Talanta 53(5):1065–1071. doi:10.1016/s0039-9140(00)00602-0

    Article  CAS  Google Scholar 

  • Singh J, Singh AK, Jain AK (2011) Fabrication of novel coated graphite electrodes for the selective nano-level determination of Cd2+ ions in biological and environmental samples. Electrochim Acta 56(25):9095–9104. doi:10.1016/j.electacta.2011.06.106

    Article  CAS  Google Scholar 

  • Švancara I, Vytřas K, Kalcher K, Walcarius A, Wang J (2009a) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years Jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21(1):7–28. doi:10.1002/elan.200804340

    Article  CAS  Google Scholar 

  • Švancara I, Walcarius A, Kalcher K, Vytřas K (2009b) Carbon paste electrodes in the new millennium. Cent Eur J Chem 7(4):598–656. doi:10.2478/s11532-009-0097-9

    Article  CAS  Google Scholar 

  • Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135. doi:10.1016/j.aca.2007.12.011

    Article  CAS  Google Scholar 

  • Wen X, Wu P, Xu K, Wang J, Hou X (2009) On-line precipitation–dissolution in knotted reactor for thermospray flame furnace AAS for determination of ultratrace cadmium. Microchem J 91(2):193–196. doi:10.1016/j.microc.2008.11.001

    Article  CAS  Google Scholar 

  • Yang G, Hu Q, Huang Z, Yin J (2005) Study on the determination of lead, cadmium, mercury, nickel and zinc by a rapid column high-performance liquid chromatography. J Braz Chem Soc 16:1154–1159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of the Islamic Development Bank, the IDB Merit scholarship programme, and University of Malaya, Postgraduate Research Grant (PPP) Grant No. PS098/2010B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Aroua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismaiel, A.A., Aroua, M.K. & Yusoff, R. Cadmium (II)-selective electrode based on palm shell activated carbon modified with task-specific ionic liquid: kinetics and analytical applications. Int. J. Environ. Sci. Technol. 11, 1115–1126 (2014). https://doi.org/10.1007/s13762-013-0296-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0296-y

Keywords

Navigation