Skip to main content

Advertisement

Log in

Utility of ganglion cells for the evaluation of anterior visual pathway pathology: a review

  • Review article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

The management of optic neuropathy is fundamental to neuro-ophthalmic practice. Following the invention of the ophthalmoscope, clinicians, for a century or more, relied upon fundus examination in the evaluation of optic neuropathy. However, the advent of optical coherence tomography, based on the principle of backscattering of light and interferometry, has revolutionized the analysis of optic nerve and retinal disorders. Optical coherence tomography has proven of particular value in the measurement, at the micron level, of the peripapillary retinal nerve fibre layer and the ganglion cell layer. These measurements have proven critical in the differential diagnosis and monitoring of optic neuropathy. Specifically, thinning of the peripapillary nerve fibre layer provides evidence of axonal loss affecting any sector of the optic nerve. Thinning of the macular ganglion cell layer, on the other hand, shows a more precise correlation with visual deficits due to retrograde degeneration following optic nerve damage, although limited to central retina. In daily practise, optical coherence tomography is of great value in assessing the diagnosis, prognosis and response to treatment in optic neuropathy. Particular advances have been made, for example, in the assessment of optic neuritis, papilloedema and chiasmal compression which have translated to everyday practice. As with any other imaging technology the clinician must have a clear understanding of acquisition artefacts. A further issue is the relatively limited normative database in sub-populations such as the young and individuals with a refractive error > + 5 or < −5 dioptres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AION:

Anterior ischemic optic neuropathy

CON:

Compressive optic neuropath

GCC:

Ganglion cell complex (inner plexiform layer (IPL) + ganglion cell layer (GCL)

ICP:

Intracranial pressure

IHH:

Idiopathic intracranial hypertension

INL:

Inner nuclear layer

IOP:

Intraocular pressure

MMO:

Microcystic macular oedema

NAAION:

Non-Arteritic anterior ischaemic optic neuropathy

OCT:

Optical coherence tomography

OD:

Optic disc

pRNFL:

Peripapillary retinal nerve fibre layer

RGC:

Retinal ganglion cell

VF:

Automated perimetry

References

  1. Fujimoto JG, Pitris C, Boppart SA, Brezinski ME (2000) Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2:9–25. https://doi.org/10.1038/sj.neo.7900071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Polyak SL (1941)The retina: the anatomy and the histology of the retina in man, ape, and monkey, including the consideration of visual functions, the history of physiological optics, and the histological laboratory technique. University of Chicago Press, Chicago, pp 402–404

  3. Hubel D, Livingstone M (1987) Segregation of form, color, and stereopsis in primate area 18. J Neurosci 7:3378–3415. https://doi.org/10.1523/JNEUROSCI.07-11-03378.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina:a Golgi study. J Comp Neurol 318:147–187. https://doi.org/10.1002/cne.903180204

    Article  CAS  PubMed  Google Scholar 

  5. Glaser JS, Sadun AA (1990) Anatomy of the visual sensory system. In: Glaser JS (ed) Neuro-Ophthalmology. J.B Lippincott Co, Philadelphia, pp 61–82

    Google Scholar 

  6. Chen JJ, Kardon RH (2016) Avoiding clinical misinterpretation and artifacts of optical coherence tomography analysis of the optic nerve, retinal nerve fiber layer, and ganglion cell layer. J Neuroophthalmol 36:417–438. https://doi.org/10.1097/WNO.0000000000000422

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arnold AC (2003) Pathogenesis of nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol 23:157–163. https://doi.org/10.1097/00041327-200306000-00012

    Article  PubMed  Google Scholar 

  8. Savini G (2006) Detection and quantification of retinal nerve fiber layer thickness in optic disc edema using stratus OCT. Arch Ophthalmol 124:1111. https://doi.org/10.1001/archopht.124.8.1111

    Article  PubMed  Google Scholar 

  9. Hedges TR (2008) Subretinal fluid from anterior ischemic optic neuropathy demonstrated by optical coherence tomography. Arch Ophthalmol 126:812. https://doi.org/10.1001/archopht.126.6.812

    Article  PubMed  Google Scholar 

  10. Chapelle AC, Rakic JM, Plant GT (2023) The occurrence of intra- and sub-retinal fluid in anterior ischemic optic neuropathy: pathogenesis prognosis and treatment. Ophthalmology. https://doi.org/10.1016/j.ophtha.2023.07.015

    Article  PubMed  Google Scholar 

  11. MacIntosh PW (2020) Acute changes in ganglion cell layer thickness in ischemic optic neuropathy compared to optic neuritis using optical coherence tomography. Int J Ophthalmol 13:120–123. https://doi.org/10.18240/ijo.2020.01.17

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee YH, Kim KN, Heo DW et al (2017) Difference in patterns of retinal ganglion cell damage between primary open-angle glaucoma and non-arteritic anterior ischaemic optic neuropathy. PLoS ONE 12:e0187093. https://doi.org/10.1371/journal.pone.0187093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jonas JB, Schmidt AM, Müller-Bergh JA et al (1992) Human optic nerve fiber count and optic disc size. Invest Ophthalmol Vis Sci 33:2012–2018

    CAS  PubMed  Google Scholar 

  14. Saeed P, Tavakoli Rad S, Bisschop PHLT (2018) Dysthyroid optic neuropathy. Ophthalmic Plast Reconstr Surg 34:S60–S67. https://doi.org/10.1097/IOP.0000000000001146

    Article  PubMed  Google Scholar 

  15. Aryasit O, Tiraset N, Preechawai P et al (2021) IgG4-related disease in patients with idiopathic orbital inflammation. BMC Ophthalmol 21:356. https://doi.org/10.1186/s12886-021-02115-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Peiris JB, Ross Russell RW (1980) Giant aneurysms of the carotid system presenting as visual field defect. J Neurol Neurosurg Psychiatry 43:1053–1064. https://doi.org/10.1136/jnnp.43.12.1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Imes RK (1985) Evolution of optociliary veins in optic nerve sheath meningioma: evolution. Arch Ophthalmol 103:59. https://doi.org/10.1001/archopht.1985.01050010063020

    Article  CAS  PubMed  Google Scholar 

  18. Loo J-L, Tian J, Miller NR, Subramanian PS (2013) Use of optical coherence tomography in predicting post-treatment visual outcome in anterior visual pathway meningiomas. Br J Ophthalmol 97:1455–1458. https://doi.org/10.1136/bjophthalmol-2013-303449

    Article  PubMed  Google Scholar 

  19. Chang L, El-Dairi MA, Frempong TA et al (2010) Optical coherence tomography in the evaluation of neurofibromatosis type-1 subjects with optic pathway gliomas. J Am Assoc Pediatr Ophthalmol Strabismus 14:511–517. https://doi.org/10.1016/j.jaapos.2010.08.014

    Article  Google Scholar 

  20. Fard MA, Fakhree S, Eshraghi B (2013) Correlation of optical coherence tomography parameters with clinical and radiological progression in patients with symptomatic optic pathway gliomas. Graefes Arch Clin Exp Ophthalmol 251:2429–2436. https://doi.org/10.1007/s00417-013-2394-4

    Article  PubMed  Google Scholar 

  21. Sayın O, Yeter V, Arıtürk N (2016) Optic disc, macula, and retinal nerve fiber layer measurements obtained by OCT in thyroid-associated ophthalmopathy. J Ophthalmol 2016:1–7. https://doi.org/10.1155/2016/9452687

    Article  Google Scholar 

  22. Al-Dahmani K, Mohammad S, Imran F et al (2016) Sellar masses: an epidemiological study. Can J Neurol Sci 43:291–297. https://doi.org/10.1017/cjn.2015.301

    Article  PubMed  Google Scholar 

  23. Danesh-Meyer HV, Yap J, Frampton C, Savino PJ (2014) Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography. Ophthalmology 121:1516–1523. https://doi.org/10.1016/j.ophtha.2014.02.020

    Article  PubMed  Google Scholar 

  24. Moura FC, Medeiros FA, Monteiro MLR (2007) Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology 114:175–181. https://doi.org/10.1016/j.ophtha.2006.06.045

    Article  PubMed  Google Scholar 

  25. Lee EJ, Yang HK, Kim T-W et al (2015) Comparison of the pattern of retinal ganglion cell damage between patients with compressive and glaucomatous optic neuropathies. Invest Ophthalmol Vis Sci 56:7012. https://doi.org/10.1167/iovs.15-17909

    Article  PubMed  Google Scholar 

  26. Monteiro MLR, Hokazono K, Fernandes DB et al (2014) Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Invest Ophthalmol Vis Sci 55:3328. https://doi.org/10.1167/iovs.14-14118

    Article  PubMed  PubMed Central  Google Scholar 

  27. Micieli JA, Newman NJ, Biousse V (2019) The role of optical coherence tomography in the evaluation of compressive optic neuropathies. Curr Opin Neurol 32:115–123. https://doi.org/10.1097/WCO.0000000000000636

    Article  PubMed  Google Scholar 

  28. Kleerekooper I, Wagner SK, Trip SA et al (2023) Differentiating glaucoma from chiasmal compression using optical coherence tomography: the macular naso-temporal ratio. Br J Ophthalmol. https://doi.org/10.1136/bjo-2023-323529

    Article  PubMed  Google Scholar 

  29. Zhang X, Kedar S, Lynn MJ et al (2006) Homonymous hemianopias: Clinical-anatomic correlations in 904 cases. Neurology 66:906–910. https://doi.org/10.1212/01.wnl.0000203913.12088.93

    Article  CAS  PubMed  Google Scholar 

  30. Plant GT, Kermode AG, Turano G et al (1992) Symptomatic retrochiasmal lesions in multiple sclerosis: clinical features, visual evoked potentials, and magnetic resonance imaging. Neurology 42:68–76. https://doi.org/10.1212/wnl.42.1.68

    Article  CAS  PubMed  Google Scholar 

  31. Hendrickson A, Warner CE, Possin D et al (2015) Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey. Brain Struct Funct 220:351–360. https://doi.org/10.1007/s00429-013-0659-7

    Article  CAS  PubMed  Google Scholar 

  32. Cowey A, Stoerig P (1995) Blindsight in monkeys. Nature 373:247–249. https://doi.org/10.1038/373247a0

    Article  CAS  PubMed  Google Scholar 

  33. Jindahra P, Petrie A, Plant GT (2009) Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 132:628–634. https://doi.org/10.1093/brain/awp001

    Article  PubMed  Google Scholar 

  34. Kanamori A, Nakamura M, Yamada Y, Negi A (2013) Spectral-domain optical coherence tomography detects optic atrophy due to optic tract syndrome. Graefes Arch Clin Exp Ophthalmol 251:591–595. https://doi.org/10.1007/s00417-012-2096-3

    Article  PubMed  Google Scholar 

  35. Keller J, Sánchez-Dalmau BF, Villoslada P (2014) Lesions in the posterior visual pathway promote trans-synaptic degeneration of retinal ganglion cells. PLoS ONE 9:e97444. https://doi.org/10.1371/journal.pone.0097444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fraser C, Plant GT (2011) The syndrome of pseudotumour cerebri and idiopathic intracranial hypertension. Curr Opin Neurol 24:12–17. https://doi.org/10.1097/WCO.0b013e328341f94a

    Article  PubMed  Google Scholar 

  37. Morgan WH, Yu DY, Balaratnasingam C (2008) The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J Glaucoma 17:408–413. https://doi.org/10.1097/IJG.0b013e31815c5f7c

    Article  PubMed  Google Scholar 

  38. Cogan DG, Kuwabara T (1977) Papilledema. Exp Eye Res 25:419–433. https://doi.org/10.1016/S0014-4835(77)80039-0

    Article  PubMed  Google Scholar 

  39. Traber GL, Weber KP, Sabah M et al (2017) Enhanced depth imaging optical coherence tomography of optic nerve head drusen. Ophthalmology 124:66–73. https://doi.org/10.1016/j.ophtha.2016.09.022

    Article  PubMed  Google Scholar 

  40. Villarruel JM, Li XQ, Bach-Holm D, Hamann S (2017) anterior lamina cribrosa surface position in idiopathic intracranial hypertension and glaucoma. Eur J Ophthalmol 27:55–61. https://doi.org/10.5301/ejo.5000806

    Article  PubMed  Google Scholar 

  41. Petzold A, Fraser CL, Abegg M et al (2022) Diagnosis and classification of optic neuritis. The Lancet Neurology 21:1120–1134. https://doi.org/10.1016/S1474-4422(22)00200-9

    Article  PubMed  Google Scholar 

  42. McDonald WI, Barnes D (1992) The ocular manifestations of multiple sclerosis. 1. abnormalities of the afferent visual system. J Neurol Neurosurg Psychiatry 55:747–752. https://doi.org/10.1136/jnnp.55.9.747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Trip SA, Schlottmann PG, Jones SJ et al (2005) Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 58:383–391. https://doi.org/10.1002/ana.20575

    Article  PubMed  Google Scholar 

  44. Coric D, Balk LJ, Uitdehaag BMJ, Petzold A (2017) Diagnostic accuracy of optical coherence tomography inter-eye percentage difference for optic neuritis in multiple sclerosis. Eur J Neurol 24:1479–1484. https://doi.org/10.1111/ene.13443

    Article  CAS  PubMed  Google Scholar 

  45. Petzold A, Chua SYL, Khawaja AP et al (2021) Retinal asymmetry in multiple sclerosis. Brain 144:224–235. https://doi.org/10.1093/brain/awaa361

    Article  PubMed  Google Scholar 

  46. Kupersmith MJ, Nelson JI, Seiple WH et al (1983) The 20/20 eye in multiple sclerosis. Neurology 33:1015–1015. https://doi.org/10.1212/WNL.33.8.1015

    Article  CAS  PubMed  Google Scholar 

  47. Brusa A, Jones SJ, Plant GT (2001) Long-term remyelination after optic neuritis. Brain 124:468–479. https://doi.org/10.1093/brain/124.3.468

    Article  CAS  PubMed  Google Scholar 

  48. Werring DJ (2000) Recovery from optic neuritis is associated with a change in the distribution of cerebral response to visual stimulation: a functional magnetic resonance imaging study. J Neurol Neurosurg Psychiatry 68:441–449. https://doi.org/10.1136/jnnp.68.4.441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sherif M, Bergin C, Borruat F-X (2019) Normal visual recovery after optic neuritis despite significant loss of retinal ganglion cells in patients with multiple sclerosis. Klin Monatsbl Augenheilkd 236:425–428. https://doi.org/10.1055/a-0853-1721

    Article  PubMed  Google Scholar 

  50. Park K-A, Kim J, Oh SY (2014) Analysis of spectral domain optical coherence tomography measurements in optic neuritis: differences in neuromyelitis optica, multiple sclerosis, isolated optic neuritis and normal healthy controls. Acta Ophthalmol 92:e57–e65. https://doi.org/10.1111/aos.12215

    Article  PubMed  Google Scholar 

  51. Schneider E, Zimmermann H, Oberwahrenbrock T et al (2013) Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE 8:e66151. https://doi.org/10.1371/journal.pone.0066151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kerrison J (2004) Optic neuropathies caused by toxins and adverse drug reactions. Ophthalmol Clin North Am 17:481–488. https://doi.org/10.1016/j.ohc.2004.05.005

    Article  PubMed  Google Scholar 

  53. Plant GT, Mtanda AT, Arden GB, Johnson GJ (1997) An epidemic of optic neuropathy in Tanzania: characterization of the visual disorder and associated peripheral neuropathy. J Neurol Sci 145:127–140. https://doi.org/10.1016/S0022-510X(96)00162-1

    Article  CAS  PubMed  Google Scholar 

  54. Thomas PK, Plant GT, Baxter P et al (1995) An epidemic of optic neuropathy and painful sensory neuropathy in cuba: clinical aspects. J Neurol 242:629–638. https://doi.org/10.1007/BF00866912

    Article  CAS  PubMed  Google Scholar 

  55. Korkiamäki P, Kervinen M, Karjalainen K et al (2013) Prevalence of the primary LHON mutations in Northern Finland associated with bilateral optic atrophy and tobacco-alcohol amblyopia. Acta Ophthalmol 91:630–634. https://doi.org/10.1111/j.1755-3768.2012.02506.x

    Article  CAS  PubMed  Google Scholar 

  56. Plant GT, Perry VH (1990) The anatomical basis of the caecocentral scotoma: new observations and a review. Brain 113:1441–1457. https://doi.org/10.1093/brain/113.5.1441

    Article  PubMed  Google Scholar 

  57. Clayton LM, Devile M, Punte T et al (2012) Patterns of peripapillary retinal nerve fiber layer thinning in vigabatrin-exposed individuals. Ophthalmology 119:2152–2160. https://doi.org/10.1016/j.ophtha.2012.05.009

    Article  PubMed  Google Scholar 

  58. Moura F, Monteiro M (2010) Evaluation of retinal nerve fiber layer thickness measurements using optical coherence tomography in patients with tobacco-alcohol-induced toxic optic neuropathy. Indian J Ophthalmol 58:143. https://doi.org/10.4103/0301-4738.60087

    Article  PubMed  PubMed Central  Google Scholar 

  59. Barboni P, Carbonelli M, Savini G et al (2010) Natural history of Leber’s hereditary optic neuropathy: longitudinal analysis of the retinal nerve fiber layer by optical coherence tomography. Ophthalmology 117:623–627. https://doi.org/10.1016/j.ophtha.2009.07.026

    Article  PubMed  Google Scholar 

  60. Wang MY, Sadun AA (2013) Drug-related mitochondrial optic neuropathies. J Neuroophthalmol 33:172–178. https://doi.org/10.1097/WNO.0b013e3182901969

    Article  CAS  PubMed  Google Scholar 

  61. Vieira LMC, Silva NFA, Dias Dos Santos AM et al (2015) Retinal ganglion cell layer analysis by optical coherence tomography in toxic and nutritional optic neuropathy. J Neuroophthalmol 35:242–245. https://doi.org/10.1097/WNO.0000000000000229

    Article  PubMed  Google Scholar 

  62. Han J, Byun MK, Lee J et al (2015) Longitudinal analysis of retinal nerve fiber layer and ganglion cell–inner plexiform layer thickness in ethambutol-induced optic neuropathy. Graefes Arch Clin Exp Ophthalmol 253:2293–2299. https://doi.org/10.1007/s00417-015-3150-8

    Article  CAS  PubMed  Google Scholar 

  63. Delettre C, Lenaers G, Pelloquin L et al (2002) OPA1 (Kjer Type) dominant optic atrophy: a novel mitochondrial disease. Mol Genet Metab 75:97–107. https://doi.org/10.1006/mgme.2001.3278

    Article  CAS  PubMed  Google Scholar 

  64. Delettre C, Lenaers G, Griffoin J-M et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210. https://doi.org/10.1038/79936

    Article  CAS  PubMed  Google Scholar 

  65. Alexander C, Votruba M, Pesch UEA et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215. https://doi.org/10.1038/79944

    Article  CAS  PubMed  Google Scholar 

  66. Wallace DC, Singh G, Lott MT et al (1988) Mitochondrial DNA Mutation Associated with Leber’s hereditary optic neuropathy. Science 242:1427–1430. https://doi.org/10.1126/science.3201231

    Article  CAS  PubMed  Google Scholar 

  67. Spruijt L, Kolbach DN, De Coo RF et al (2006) Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am J Ophthalmol 141:676-676.e8. https://doi.org/10.1016/j.ajo.2005.11.007

    Article  PubMed  Google Scholar 

  68. Asanad S, Tian JJ, Frousiakis S et al (2019) Optical coherence tomography of the retinal ganglion cell complex in Leber’s hereditary optic neuropathy and dominant optic atrophy. Curr Eye Res 44:638–644. https://doi.org/10.1080/02713683.2019.1567792

    Article  PubMed  Google Scholar 

  69. Savini G, Barboni P, Valentino M et al (2005) Retinal nerve fiber layer evaluation by optical coherence tomography in unaffected carriers with Leber’s hereditary optic neuropathy mutations. Ophthalmology 112:127–131. https://doi.org/10.1016/j.ophtha.2004.09.033

    Article  PubMed  Google Scholar 

  70. Hedges TR, Gobuty M, Manfready RA et al (2016) The optical coherence tomographic profile of leber hereditary optic neuropathy. Neuro-Ophthalmology 40:107–112. https://doi.org/10.3109/01658107.2016.1173709

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu-Wai-Man P, Bailie M, Atawan A et al (2011) Pattern of retinal ganglion cell loss in dominant optic atrophy due to OPA1 mutations. Eye 25:596–602. https://doi.org/10.1038/eye.2011.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Barboni P, Savini G, Cascavilla ML et al (2014) Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation. Am J Ophthalmol 158:628-636.e3. https://doi.org/10.1016/j.ajo.2014.05.034

    Article  PubMed  Google Scholar 

  73. Alshareef RA, Dumpala S, Rapole S et al (2016) Prevalence and distribution of segmentation errors in macular ganglion cell analysis of healthy eyes using cirrus HD-OCT. PLoS ONE 11:e0155319. https://doi.org/10.1371/journal.pone.0155319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alshareef RA, Goud A, Mikhail M et al (2017) Segmentation errors in macular ganglion cell analysis as determined by optical coherence tomography in eyes with macular pathology. Int J Retin Vitr 3:25. https://doi.org/10.1186/s40942-017-0078-7

    Article  Google Scholar 

  75. Menke MN, Feke GT, Trempe CL (2005) OCT measurements in patients with optic disc edema. Invest Ophthalmol Vis Sci 46:3807. https://doi.org/10.1167/iovs.05-0352

    Article  PubMed  Google Scholar 

  76. Bayer A, Akman A (2020) Artifacts and anatomic variations in optical coherence tomography. Turkish J Ophthalmol 50:99–106. https://doi.org/10.4274/tjo.galenos.2019.78000

    Article  Google Scholar 

  77. Cheung CYL, Leung CKS, Lin D et al (2008) Relationship between retinal nerve fiber layer measurement and signal strength in optical coherence tomography. Ophthalmology 115:1347-1351.e2. https://doi.org/10.1016/j.ophtha.2007.11.027

    Article  PubMed  Google Scholar 

  78. Ghadiali Q, Hood DC, Lee C et al (2008) An analysis of normal variations in retinal nerve fiber layer thickness profiles measured with optical coherence tomography. J Glaucoma 17:333–340. https://doi.org/10.1097/IJG.0b013e3181650f8b

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chai SJ, Foroozan R (2007) Decreased retinal nerve fibre layer thickness detected by optical coherence tomography in patients with ethambutol-induced optic neuropathy. Br J Ophthalmol 91:895–897. https://doi.org/10.1136/bjo.2006.113118

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received towards this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Catherine Chapelle.

Ethics declarations

Conflict of interest

The authors report no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapelle, AC., Rakic, JM. & Plant, G.T. Utility of ganglion cells for the evaluation of anterior visual pathway pathology: a review. Acta Neurol Belg (2024). https://doi.org/10.1007/s13760-024-02522-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13760-024-02522-z

Keywords

Navigation