Skip to main content

Circumpapillary Retinal Nerve Fiber Layer, Optic Nerve Head, and Related Structural Abnormalities

  • Chapter
  • First Online:
Atlas of Ocular Optical Coherence Tomography

Abstract

This chapter covers changes related to the optic disc and abnormalities in various ocular conditions. This chapter is divided into the following sections. (1) Glaucoma, the most important section of this chapter, describes different changes that can be detected in glaucoma and important considerations in the interpretation of the retinal nerve fiber layer (RNFL) thickness profile. OCT can assess glaucoma using parameters: (a) peripapillary RNFL (retinal nerve fiber layer) parameters, (b) optic nerve head parameters, (c) macular parameters. Pitfalls and artifacts in image acquisition and interpretation are fully discussed. (2) The myelinated nerve fiber layer in the optic disc area and other parts of the retina. In OCT, because the myelinated sheet of nerves can reflect light almost completely, we always have a highly reflective surface with strong shadowing of the underlying tissue. (3) The optic pit and its secondary retinoschisis. OCT in optic pit maculopathy demonstrates a combination of outer retinal layer detachment and retinoschisis in most cases. (4) Anterior ischemic optic neuropathy (AION). In early-stage AION, OCT shows a considerable increase in RNFL thickness that converts to a plateau and then atrophies in 6 months. (5) Optic disc drusen, which is a progressive disease; most cases lose the RNFL and show visual field defects in perimetry. “Lumpy-bumpy” internal reflectivity on OCT images strongly suggests drusen. (6) OCT in neurologic disease that covers new OCT findings in MS (multiple sclerosis), NMO (neuromyelitis optica), papillitis, papilledema, and intracranial lesion or tumor, and their effects on the retinal layer will completely be explained with other complementary tests and tips for differentiation between papilledema and papillitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mwanza JC, Budenz DL. Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression. Curr Opin Ophthalmol. 2016;27:102–10.

    Article  Google Scholar 

  2. Appukuttan B, Giridhar A, Gopalakrishnan M, et al. Normative spectral domain optical coherence tomography data on macular and retinal nerve fibre layer thickness in Indians. Indian J Ophthalmol. 2014;2014(62):316–21.

    Google Scholar 

  3. Knight ORG, Girkin CA, Budenz DL, et al. Effect of race, age, and axial length on optic nerve head parameters and retinal nerve fiber layer thickness measured by Cirrus HD-OCT. Arch Ophthalmol. 2012;130(3):312.

    Article  Google Scholar 

  4. Budenz DL, Anderson DR, Varma R, et al. Determinants of normal retinal nerve fiber layer thickness measured by stratus OCT. Ophthalmology. 2007;114(6):1046–52.

    Google Scholar 

  5. Tariq YM, Li H, Burlutsky G, et al. Retinal nerve fiber layer and optic disc measurements by spectral domain OCT: normative values and associations in young adults. 2012;26(12):1563–70

    Google Scholar 

  6. MashigeK P, Oduntan OA. Retinal nerve fibre layer thickness values and their associations with ocular and systemic parameters in Black South Africans. Afr Health Sci. 2017;16(4):1188.

    Article  Google Scholar 

  7. Sani R, Abdu L, Pam V. Retinal nerve fiber layer thickness measurements of normal Northern Nigerian adults using optical coherence tomography. Ann Afr Med. 2016;15:52–7.

    Google Scholar 

  8. Manassakorn A, Nouri-Mahdavi K, Caprioli J. Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol. 2006;141:105–15.

    Article  Google Scholar 

  9. Bendschneider D, Tornow RP, Horn FK, et al. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma. 2010;19:475–82.

    Article  Google Scholar 

  10. Hirasawa H, Tomidokoro A, Araie M, et al. Peripapillary retinal nerve fiber layer thickness determined by spectral-domain optical coherence tomography in ophthalmologically normal eyes. Arch Ophthalmol. 2010;128:1420.

    Google Scholar 

  11. Mwanza J-C, Durbin MK, Budenz LB. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the cirrus HD-OCT in healthy eyes. Am J Ophthalmol. 2011;151:514–21.

    Article  Google Scholar 

  12. Shin JW, Uhm KB, Seong M. Retinal nerve fiber layer defect volume deviation analysis using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2015;56:21–8.

    Article  Google Scholar 

  13. Shin JW, Uhm KB, Seong M, Lee DE. Retinal nerve fiber layer volume measurements in healthy subjects using spectral domain optical coherence tomography. J Glaucoma. 2014;23:567–73.

    Article  Google Scholar 

  14. Liu T, Tatham AJ, Gracitelli CP, Zangwill LM, Weinreb RN, Medeiros FA. Rates of retinal nerve fiber layer loss in contralateral eyes of glaucoma patients with unilateral progression by conventional methods. Ophthalmology. 2015;122:2243–51.

    Article  Google Scholar 

  15. Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98 Suppl–2:ii15–9.

    Google Scholar 

  16. Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015;(11):CD008803.

    Google Scholar 

  17. Straatsma BR, Foos RY, Heckenlively JR, Taylor GN. Myelinated retinal nerve fibers. Am J Ophthalmol. 1981;91:25–38.

    Article  CAS  Google Scholar 

  18. Kodama T, Hayasaka S, Setogawa T. Myelinated retinal nerve fibers: prevalence, location and effect on visual acuity. Ophthalmologica. 1990;200:77–83.

    Article  CAS  Google Scholar 

  19. Tarabishy AB, Alexandrou TJ, Traboulsi EI. Syndrome of myelinated retinal nerve fibers, myopia, and amblyopia: a review. Surv Ophthalmol. 2007;52:588–96.

    Article  Google Scholar 

  20. Lam AK, Pang PC. The effect of myelination on perimetry and retinal nerve fibre analysis. Clin Exp Optom. 2000;83:4–11.

    Article  Google Scholar 

  21. Shelton JB, Digre KB, Gilman J, et al. Characteristics of myelinated retinal nerve fiber layer in ophthalmic imaging: findings on autofluorescence, fluorescein angiographic, infrared, optical coherence tomographic, and red-free images. JAMA Ophthalmol. 2013;131:107–9.

    Article  Google Scholar 

  22. Jain N, Johnson MW. Pathogenesis and treatment of maculopathy associated with cavitary optic disc anomalies. Am J Ophthalmol. 2014;158:423–35.

    Article  Google Scholar 

  23. Ferry AP. Macular detachment associated with congenital pit of the optic nerve head. Pathologic findings in two cases simulating malignant melanoma of the choroid. Arch Ophthalmol. 1963;70:346–57.

    Google Scholar 

  24. Georgalas I, Ladas I, Georgopoulos G, et al. Optic disc pit: a review. Graefes Arch Clin Exp Ophthalmol. 2011;249:1113–22.

    Article  Google Scholar 

  25. Brodsky MC. Congenital optic disk anomalies. Surv Ophthalmol. 1994;39:89–112.

    Article  CAS  Google Scholar 

  26. Theodossiadis GP, Panopoulos M, Kollia AK, et al. Long-term study of patients with congenital pit of the optic nerve and persistent macular detachment. Acta Ophthalmol. 1992;70:495–505.

    Article  CAS  Google Scholar 

  27. Brown GC, Shields JA, Goldberg RE. Congenital pits of the optic nerve head. II. Clinical studies in humans. Ophthalmology. 1980;87:51–65.

    Article  CAS  Google Scholar 

  28. Shah SD, Yee KK, Fortun JA, et al. Optic disc pit maculopathy: a review and update on imaging and treatment. Int Ophthalmol Clin Spring. 2014;54:61–78.

    Article  Google Scholar 

  29. Bonnet M. Serous macular detachment associated with optic nerve pits. Graefes Arch Clin Exp Ophthalmol. 1991;229:526–32.

    Article  CAS  Google Scholar 

  30. Kranenburg EW. Crater-like holes in the optic disc and central serous retinopathy. Arch Ophthalmol. 1960;64:912–24.

    Article  CAS  Google Scholar 

  31. Brockhurst RJ. Optic pits and posterior retinal detachment. Trans Am Ophthalmol Soc. 1975;73:264–91.

    CAS  Google Scholar 

  32. Sanghi G, Padhi TR, Warkad VU, et al. Optical coherence tomography findings and retinal changes after vitrectomy for optic disc pit maculopathy. Indian J Ophthalmol. 2014;62:287–90.

    Article  Google Scholar 

  33. Contreras I, Noval S, Rebolleda G, et al. Follow-up of nonarteritic anterior ischemic optic neuropathy with optical coherence tomography. Ophthalmology. 2007;114:2338–44.

    Article  Google Scholar 

  34. Fard MA, Afzali M, Abdi P, et al. Comparison of the pattern of macular ganglion cell-inner plexiform layer defect between ischemic optic neuropathy and open-angle glaucoma. Invest Ophthalmol Vis Sci. 2016;57:1011–6.

    Article  Google Scholar 

  35. Gonul S, Koktekir BE, Bakbak B, et al. Comparison of the ganglion cell complex and retinal nerve fiber layer measurements using Fourier domain optical coherence tomography to detect ganglion cell loss in non arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2013;97:1045–50.

    Article  Google Scholar 

  36. Schuster AK, Steinmetz P, Forster TM, et al. Choroidal thickness in nonarteritic anterior ischemic optic neuropathy. Am Ophthalmol. 2014;158:1342–7.

    Article  Google Scholar 

  37. Friedman AH, Henkind P, Gartner S. Drusen of the optic disc. A histopathological study. Trans Ophthalmol Soc U K. 1975;95:4–9.

    Google Scholar 

  38. Golnik K. Congenital optic nerve anomalies. Curr Opin Ophthalmol. 1998;9:18–26.

    Article  CAS  Google Scholar 

  39. Antcliff RJ, Spalton DJ. Are optic disc drusen inherited? Ophthalmology. 1999;106:1278–81.

    Article  CAS  Google Scholar 

  40. Tso MO. Pathology and pathogenesis of drusen of the optic nervehead. Ophthalmology. 1981;88:1066–80.

    Article  CAS  Google Scholar 

  41. Spencer TS, Katz BJ, Weber SW, Digre KB, et al. 2004;24:297–8.

    Google Scholar 

  42. Johnson LN, Diehl ML, Hamm CW, Sommerville DN, Petroski GF. Differentiating optic disc edema from optic nerve head drusen on optical coherence tomography. Arch Ophthalmol. 2009;127:45–9.

    Article  Google Scholar 

  43. Kupersmith MJ, Sibony P, Mandel G, et al. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52:6558–64.

    Article  Google Scholar 

  44. Sibony P, Kupersmith MJ, Rohlf FJ. Shape analysis of the peripapillary RPE layer in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci. 2011;52:7987–95.

    Article  Google Scholar 

  45. Kurz-Levin MM, Landau K. A comparison of imaging techniques for diagnosing drusen of the optic nerve head. Arch Ophthalmol. 1999;117:1045–9.

    Article  CAS  Google Scholar 

  46. Boldt HC, Byrne SF, DiBernardo C. Echographic evaluation of optic disc drusen. J Clin Neuroophthalmol. 1991;11:85–91.

    CAS  Google Scholar 

  47. Ikuta F, Zimmerman HM. Distribution of plaques in seventy autopsy cases of multiple sclerosis in the United States. Neurology. 1976;26(6 PT2):26–8.

    Google Scholar 

  48. Toussaint D, Périer O, Verstappen A, et al. Clinicopathological study of the visual pathways, eyes, and cerebral hemispheres in 32 cases of disseminated sclerosis. J Clin Neuroophthalmol. 1983;3:211–20.

    CAS  Google Scholar 

  49. Britze J, Pihl-Jensen G, Frederiksen JL. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol. 2017;264:1837–53.

    Article  Google Scholar 

  50. Coric D, Balk LJ, Uitdehaag BMJ, et al. Diagnostic accuracy of optical coherence tomography inter-eye percentage difference for optic neuritis in multiple sclerosis. Eur J Neurol. 2017;24:1479–84.

    Article  CAS  Google Scholar 

  51. Wildemann B, Jarius S, Paul F. Neuromyelitis optica. Nervenarzt. 2013;84(4):436–41.

    Article  CAS  Google Scholar 

  52. Jarius S, Paul F, Franciotta D, et al. Mechanisms of disease: aquaporin-4 antibodies in neuromyelitis optica. Nat Clin Pract Neurol. 2008;4(4):202–14.

    Article  CAS  Google Scholar 

  53. Jarius S, Wildemann B, Paul F. Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol. 2014;176(2):149–64.

    Article  CAS  Google Scholar 

  54. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89.

    Article  Google Scholar 

  55. Kremer L, Mealy M, Jacob A, et al. Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler. 2014;20(7):843–7.

    Article  CAS  Google Scholar 

  56. Zhao S, Mutch K, Elsone L, et al. Neuropathic pain in neuromyelitis optica affects activities of daily living and quality of life. Mult Scler. 2014;20(12):1658–61.

    Article  Google Scholar 

  57. Chavarro VS, Mealy MA, Simpson A, et al. Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder. Neurol Neuroimmunol Neuroinflamm. 2016;e286:3.

    Google Scholar 

  58. Chanson J-B, Zéphir H, Collongues N, et al. Evaluation of health-related quality of life, fatigue and depression in neuromyelitis optica. Eur J Neurol. 2011;18(6):836–41.

    Article  Google Scholar 

  59. Metz I, Beißbarth T, Ellenberger D, et al. Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;e204:3.

    Google Scholar 

  60. Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e110.

    Google Scholar 

  61. Paul F, Jarius S, Aktas O, et al. Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med. 2007;e133:4.

    Google Scholar 

  62. Jarius S, Ruprecht K, Wildemann B, et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation. 2012;9:14.

    Article  CAS  Google Scholar 

  63. Bennett JL, O’Connor KC, Bar-Or A, et al. B lymphocytes in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;e104:2.

    Google Scholar 

  64. Melamed E, Levy M, Waters PJ, et al. Update on biomarkers in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2015;e134:2.

    Google Scholar 

  65. Takeshita Y, Obermeier B, Cotleur AC, et al. Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm. 2017;e311:4.

    Google Scholar 

  66. Ramanathan S, Prelog K, Barnes EH, et al. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler. 2016;22(4):470–82.

    Article  CAS  Google Scholar 

  67. Sanchez-Dalmau B, Martinez-Lapiscina EH, Torres-Torres R, et al. Early retinal atrophy predicts long-term visual impairment after acute optic neuritis. Mult Scler. 2017;1352458517718628.

    Google Scholar 

  68. Balcer LJ. Clinical practice. Optic neuritis. N Engl J Med. 2006;354(12):1273–80.

    Article  CAS  Google Scholar 

  69. Sotirchos ES, Saidha S, Byraiah G, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology. 2013;80(15):1406–14.

    Article  Google Scholar 

  70. Schneider E, Zimmermann H, Oberwahrenbrock T, et al. Optical coherence tomography reveals distinct patterns of retinal damage in neuromyelitis optica and multiple sclerosis. PLoS ONE. 2013;8(6):e66151.

    Google Scholar 

  71. Costello F. Optical coherence tomography in neuro-ophthalmology. Neurol Clin. 2017;35(1):153–63.

    Article  Google Scholar 

  72. Bock M, Brandt AU, Dörr J, et al. Patterns of retinal nerve fiber layer loss in multiple sclerosis patients with or without optic neuritis and glaucoma patients. Clin Neurol Neurosurg. 2010;112(8):647–52.

    Article  Google Scholar 

  73. Merle H, Olindo S, Jeannin S, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol Chic Ill. 1960;2012(130):858–62.

    Google Scholar 

  74. Monteiro MLR, Fernandes DB, Apóstolos-Pereira SL, et al. Quantification of retinal neural loss in patients with neuromyelitis optica and multiple sclerosis with or without optic neuritis using Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(7):3959–66.

    Article  Google Scholar 

  75. Sotirchos ES, Saidha S, Byraiah G, Mealy MA, Ibrahim MA, Sepah YJ, et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology. 2013;80(15):1406–14.

    Article  Google Scholar 

  76. Kaufhold F, Zimmermann H, Schneider E, et al. Optic neuritis is associated with inner nuclear layer thickening and microcystic macular edema independently of multiple sclerosis. PLoS ONE. 2013;8(8):e71145.

    Google Scholar 

  77. Gelfand JM, Cree BA, Nolan R, et al. Microcystic inner nuclear layer abnormalities and neuromyelitis optica. JAMA Neurol. 2013;70(5):629–33.

    Article  Google Scholar 

  78. Brandt AU, Oberwahrenbrock T, Kadas EM, et al. Dynamic formation of macular microcysts independent of vitreous traction changes. Neurology. 2014;83(1):73–7.

    Article  Google Scholar 

  79. Balk LJ, Killestein J, Polman CH, et al. Microcystic macular oedema confirmed, but not specific for multiple sclerosis. Brain J. Neurol. 2012;135:e226. Return to ref 128 in article

    Google Scholar 

  80. Gelfand JM, Nolan R, Schwartz DM, et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain J Neurol. 2012;135(6):1786–93.

    Article  Google Scholar 

  81. Felix CM, Levin MH, Verkman AS. Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G. J Neuroinflammation. 2016;13(1):275.

    Article  Google Scholar 

  82. Reichenbach A, Bringmann A. Müller cells in the healthy and diseased retina. 1st ed. New York: Springer; 2010.

    Book  Google Scholar 

  83. Reichenbach A, Bringmann A. New functions of Müller cells. Glia. 2013;61(5):651–78.

    Article  Google Scholar 

  84. Tian D-C, Su L, Fan M, et al. Bidirectional degeneration in the visual pathway in neuromyelitis optica spectrum disorder (NMOSD). Mult Scler. 2017;1352458517727604.

    Google Scholar 

  85. Bassi ST, Mohana KP. Optical coherence tomography in papilledema and pseudopapilledema with and without optic nerve head drusen. Ind J Ophthalmol. 2014;62:1146–51.

    Article  Google Scholar 

  86. Lessell S. Nutritional deficiency and toxic optic neuropathies. In: Albert DM, Jakobiec FA, editors. Principles and practice of ophthalmology. 2nd ed. Philadelphia: W.B. Saunders Company; 2000. p. 4169–76.

    Google Scholar 

  87. Phillips PH. Toxic and deficiency optic neuropathies. In: Miller NR, Newman NJ, Biousse V, Kerrison JB, editors. Walsh and Hoyt’s clinical neuro-ophthalmology. 6th ed. Baltimore, Maryland: Lippincott Williams.

    Google Scholar 

  88. Kerrison JB. Optic neuropathies caused by toxins and adverse drug reactions. Ophthalmol Clin North Am. 2004;17:481–8.

    Article  Google Scholar 

  89. Nagar B, Bornmann WG, Pellicena P, et al. Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and imatinib (STI-571). Cancer Res. 2002;62:4236–43.

    CAS  Google Scholar 

  90. Buchdunger E, O’Reilly T, Wood J. Pharmacology of imatinib (STI571). Eur J Cancer. 2002;385:S28–36.

    Article  Google Scholar 

  91. Monge KS, Gálvez-Ruiz A, Alvárez-Carrón A, et al. Optic neuropathy secondary to dasatinib in the treatment of a chronic myeloid leukemia case. Saudi J Ophthal. 29(3):227–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fedra Hajizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajizadeh, F., Tabatabaei, S.M. (2022). Circumpapillary Retinal Nerve Fiber Layer, Optic Nerve Head, and Related Structural Abnormalities. In: Hajizadeh, F. (eds) Atlas of Ocular Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-031-07410-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07410-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07409-7

  • Online ISBN: 978-3-031-07410-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics