Skip to main content

Advertisement

Log in

α-Synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters

  • Review Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Exosomes play a key role in delivery of various biological material and complex signals from one cell to another at long distances. These small extracellular vehicles are involved in mediating multiple physiological and pathogenic processes. In neurodegenerative diseases such as Parkinson’s disease (PD), exosomes contribute to disease propagation through transferring misfolded proteins from affected cells to normal cells. In PD, progressive degeneration of neurons arises from the extensive accumulation of toxic forms of α-synuclein in the cytoplasm. α-Synuclein could exist in several forms, some of which (i.e., oligomeric and polymeric forms) are cytotoxic. Neuron-derived exosomes were found to transfer α-synuclein toxic forms between neuronal and non-neuronal cells (such as astrocytes and microglia) thereby contributing to PD spreading. Deposition of α-synuclein in glial cells induces inflammation that could be further propagated to other glial cells and neurons. Neuroinflammation promotes degeneration of neurons and aggravates the pathogenesis of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Riess O, Kruger R, Schulz JB (2002) Spectrum of phenotypes and genotypes in Parkinson’s disease. J Neurol 249 Suppl 3:III/15–III/20. doi:10.1007/s00415-002-1303-2

    Google Scholar 

  2. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272. doi:10.1097/00005072-199603000-00001

    Article  CAS  PubMed  Google Scholar 

  3. Ali SF, Binienda ZK, Imam SZ (2011) Molecular aspects of dopaminergic neurodegeneration: gene-environment interaction in parkin dysfunction. Int J Environ Res Public Health 8:4702–4713. doi:10.3390/ijerph8124702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Houlden H, Singleton AB (2012) The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 124:325–338. doi:10.1007/s00401-012-1013-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee HJ, Kim C, Lee SJ (2010) Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxid Med Cell Longev 3:283–287. doi:10.4161/oxim.3.4.12809

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kim C, Lee SJ (2008) Controlling the mass action of alpha-synuclein in Parkinson’s disease. J Neurochem 107:303–316. doi:10.1111/j.1471-4159.2008.05612.x

    Article  CAS  PubMed  Google Scholar 

  7. Giasson BI, Murray IV, Trojanowski JQ, Lee VM (2001) A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem 276:2380–2386. doi:10.1074/jbc.M008919200

    Article  CAS  PubMed  Google Scholar 

  8. Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C (2009) The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 19:254–265. doi:10.1016/j.gde.2009.03.008

    Article  CAS  PubMed  Google Scholar 

  9. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M, Simón-Sánchez J, Schulte C, Lesage S, Sveinbjörnsdóttir S, Stefánsson K, Martinez M, Hardy J, Heutink P, Brice A, Gasser T, Singleton AB, Wood NW (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377:641–649. doi:10.1016/S0140-6736(10)62345-8

  10. Marques O, Outeiro TF (2012) Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis 3:e350. doi:10.1038/cddis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chinta SJ, Andersen JK (2005) Dopaminergic neurons. Int J Biochem Cell Biol 37:942–946. doi:10.1016/j.biocel.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  12. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122:1437–1448. doi:10.1093/brain/122.8.1437

    Article  PubMed  Google Scholar 

  13. Double KL, Reyes S, Werry EL, Halliday GM (2010) Selective cell death in neurodegeneration: why are some neurons spared in vulnerable regions? Prog Neurobiol 92:316–329. doi:10.1016/j.pneurobio.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  14. Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161. doi:10.1093/ageing/afp223

    Article  PubMed  Google Scholar 

  15. Youdim MB, Ben-Shachar D, Riederer P (1989) Is Parkinson’s disease a progressive siderosis of substantia nigra resulting in iron and melanin induced neurodegeneration? Acta Neurol Scand Suppl 126:47–54. doi:10.1111/j.1600-0404.1989.tb01782.x

    Article  Google Scholar 

  16. Bisaglia M, Mammi S, Bubacco L (2007) Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein. J Biol Chem 282:15597–15605. doi:10.1074/jbc.M610893200

    Article  CAS  PubMed  Google Scholar 

  17. Conway KA, Rochet JC, Bieganski RM, Lansbury PT Jr (2001) Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294:1346–1349. doi:10.1126/science.1063522

    Article  CAS  PubMed  Google Scholar 

  18. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39:151–170. doi:10.1016/0306-4522(90)90229-W

    Article  CAS  PubMed  Google Scholar 

  19. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134. doi:10.1007/s00441-004-0956-9

    Article  PubMed  Google Scholar 

  20. Goedert M, Clavaguera F, Tolnay M (2010) The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 33:317–325. doi:10.1016/j.tins.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747

    Article  CAS  PubMed  Google Scholar 

  22. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746

    Article  CAS  PubMed  Google Scholar 

  23. Fauvet B, Mbefo MK, Fares MB, Desobry C, Michael S, Ardah MT, Tsika E, Coune P, Prudent M, Lion N, Eliezer D, Moore DJ, Schneider B, Aebischer P, El-Agnaf OM, Masliah E, Lashuel HA (2012) Alpha-synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem 287:15345–15364. doi:10.1074/jbc.M111.318949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bartels T, Choi JG, Selkoe DJ (2011) Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110. doi:10.1038/nature10324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, Meaney DF, Trojanowski JQ, Lee VM (2011) Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72:57–71. doi:10.1016/j.neuron.2011.08.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59. doi:10.1093/hmg/ddp012

    Article  CAS  PubMed  Google Scholar 

  27. Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, Rockenstein E, Masliah E, Hyman BT, McLean PJ, Unni VK (2011) Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci 31:14508–14520. doi:10.1523/JNEUROSCI.1560-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Poehler AM, Xiang W, Spitzer P, May VE, Meixner H, Rockenstein E, Chutna O, Outeiro TF, Winkler J, Masliah E, Klucken J (2014) Autophagy modulates SNCA/α-synuclein release, thereby generating a hostile microenvironment. Autophagy 10:2171–2192. doi:10.4161/auto.36436

    Article  CAS  PubMed  Google Scholar 

  29. Gallegos S, Pacheco C, Peters C, Opazo CM, Aguayo LG (2015) Features of alpha-synuclein that could explain the progression and irreversibility of Parkinson’s disease. Front Neurosci 9:59. doi:10.3389/fnins.2015.00059

    Article  PubMed  PubMed Central  Google Scholar 

  30. Angot E, Brundin P (2009) Dissecting the potential molecular mechanisms underlying α-synuclein cell-to-cell transfer in Parkinson’s disease. Parkinsonism Relat Disord 15:S143–S147. doi:10.1016/S1353-8020(09)70802-8

    Article  PubMed  Google Scholar 

  31. Steiner JA, Angot E, Brundin P (2011) A deadly spread: cellular mechanisms of aalpha-synuclein transfer. Cell Death Differ 18:1425–1433. doi:10.1038/cdd.2011.53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Angot E, Steiner JA, Lema Tomé CM, Ekström P, Mattsson B, Björklund A, Brundin P (2012) Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 7:e39465. doi:10.1371/journal.pone.0039465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C, Li Y, Aro P, Dator R, He C, Hipp MJ, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Banks WA, Zhang J (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128:639–650. doi:10.1007/s00401-014-1314-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang Y, Keene CD, Peskind ER, Galasko DR, Hu SC, Cudaback E, Wilson AM, Li G, Yu CE, Montine KS, Zhang J, Baird GS, Hyman BT, Montine TJ (2015) Cerebrospinal fluid particles in Alzheimer disease and Parkinson disease. J Neuropathol Exp Neurol 74:672–687. doi:10.1097/NEN.0000000000000207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64:783–790. doi:10.1016/j.neuron.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  36. Bellingham SA, Guo BB, Coleman BM, Hill AF (2012) Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 3:124. doi:10.3389/fphys.2012.00124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coleman BM, Hill AF (2015) Extracellular vesicles—their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin Cell Dev Biol 40:89–96. doi:10.1016/j.semcdb.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  38. Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurons. Mol Cell Neurosci 31:642–648. doi:10.1016/j.mcn.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  39. Potolicchio I, Carven GI, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175:2237–2243. doi:10.4049/jimmunol.175.4.2237

    Article  CAS  PubMed  Google Scholar 

  40. Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67:1815–1829. doi:10.1002/dneu.20559

    Article  CAS  PubMed  Google Scholar 

  41. Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. doi:10.1016/j.ceb.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  42. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108. doi:10.1016/j.imlet.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  43. Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, Nave KA, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1:1446–1461. doi:10.1002/prca.200700522

    Article  PubMed  Google Scholar 

  44. Desplats P, Lee HJ, Bae EJ, Patrick C, Rockenstein E, Crews L, Spencer B, Masliah E, Lee SJ (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA 106:13010–13015. doi:10.1073/pnas.0903691106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Emmanouilidou E, Melachroinou K, Roumeliotis T, Garbis SD, Ntzouni M, Margaritis LH, Stefanis L, Vekrellis K (2010) Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J Neurosci 30:6838–6851. doi:10.1523/JNEUROSCI.5699-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alvarez-Erviti L, Seow Y, Schapira AH, Gardiner C, Sargent IL, Wood MJ, Cooper JM (2011) Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol Dis 42:360–367. doi:10.1016/j.nbd.2011.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hansen C, Angot E, Bergstrom AL, Steiner JA, Pieri L, Paul G, Outeiro TF, Melki R, Kallunki P, Fog K, Li JY, Brundin P (2011) Alpha-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121:715–725. doi:10.1172/JCI43366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee HJ, Suk JE, Bae EJ, Lee JH, Paik SR, Lee SJ (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 40:1835–1849. doi:10.1016/j.biocel.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  49. Lee HJ, Suk JE, Patrick C, Bae JE, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272. doi:10.1074/jbc.M109.081125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Halliday GM, Stevens CH (2011) Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord 26:6–17. doi:10.1002/mds.23455

    Article  PubMed  Google Scholar 

  51. Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L (2011) Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 10:1015–1025. doi:10.1016/S1474-4422(11)70213-7

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez-Erviti L, Couch Y, Richardson J, Cooper JM, Wood MJ (2011) Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci Res 69:337–342. doi:10.1016/j.neures.2010.12.020

    Article  CAS  PubMed  Google Scholar 

  53. Gao HM, Hong JS (2008) Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 29:357–365. doi:10.1016/j.it.2008.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panaro MA, Cianciulli A (2012) Current opinions and perspectives on the role of immune system in the pathogenesis of Parkinson’s disease. Curr Pharm Des 18:200–208. doi:10.2174/138161212799040574

    Article  CAS  PubMed  Google Scholar 

  55. Chang C, Lang H, Geng N, Wang J, Li N, Wang X (2013) Exosomes of BV-2 cells induced by alpha-synuclein: important mediator of neurodegeneration in PD. Neurosci Lett 548:190–195. doi:10.1016/j.neulet.2013.06.009

    Article  CAS  PubMed  Google Scholar 

  56. Halliday GM, Holton JL, Revesz T, Dickson DW (2011) Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol 122:187–204. doi:10.1007/s00401-011-0852-9

    Article  CAS  PubMed  Google Scholar 

  57. McCann H, Stevens CH, Cartwright H, Halliday GM (2014) α-Synucleinopathy phenotypes. Parkinsonism Relat Disord 20(Suppl 1):S62–S67. doi:10.1016/S1353-8020(13)70017-8

    Article  PubMed  Google Scholar 

  58. Stuendl A, Kunadt M, Kruse N, Bartels C, Moebius W, Danzer KM, Mollenhauer B, Schneider A (2016) Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies. Brain 139:481–494. doi:10.1093/brain/awv346

    Article  PubMed  Google Scholar 

  59. Danzer KM, Kranich LR, Ruf WP, Cagsal-Getkin O, Winslow AR, Zhu L, Vanderburg CR, McLean PJ (2012) Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol Neurodegener 7:42. doi:10.1186/1750-1326-7-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Park JS, Koentjoro B, Veivers D, Mackay-Sim A, Sue SM (2014) Parkinson’s disease-associated human ATP13A2 (PARK9) deficiency causes zinc dyshomeostasis and mitochondrial dysfunction. Hum Mol Genet 23:2802–2815. doi:10.1093/hmg/ddt623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Usenovic M, Tresse E, Mazzulli JR, Taylor JP, Krainc D (2012) Deficiency of ATP13A leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J Neurosci 32:4240–4246. doi:10.1523/JNEUROSCI.5575-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tsunemi T, Krainc D (2014) Zn2 + dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation. Hum Mol Genet 23:2791–2801. doi:10.1093/hmg/ddt572

    Article  CAS  PubMed  Google Scholar 

  63. Kong SM, Chan BK, Park JS, Hill KJ, Aitken JB, Cottle L, Farghaian H, Cole AR, Lay PA, Sue CM, Cooper AA (2014) Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-synuclein externalization via exosomes. Hum Mol Genet 23:2816–2833. doi:10.1093/hmg/ddu099

    Article  CAS  PubMed  Google Scholar 

  64. Tsunemi T, Hamada K, Krainc D (2014) ATP13A2/PARK9 regulates secretion of exosomes and α-synuclein. J Neurosci 34:15281–15287. doi:10.1523/JNEUROSCI.1629-14.2014

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cullen V, Sardi SP, Ng J, Xu YH, Sun Y, Tomlinson JJ, Kolodziej P, Kahn I, Saftig P, Woulfe J, Rochet JC, Glicksman MA, Cheng SH, Grabowski GA, Shihabuddin LS, Schlossmacher MG (2011) Acid β-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter α-synuclein processing. Ann Neurol 69:940–953. doi:10.1002/ana.22400

    Article  CAS  PubMed  Google Scholar 

  66. Sardi SP, Clarke J, Kinnecom C, Tamsett TJ, Li L, Stanek LM, Passini MA, Grabowski GA, Schlossmacher MG, Sidman RL, Cheng SH, Shihabuddin LS (2011) CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proc Natl Acad Sci USA 108:12101–12106. doi:10.1073/pnas.1108197108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shin N, Jeong H, Kwon J, Heo HY, Kwon JJ, Yun HJ, Kim CH, Han BS, Tong Y, Shen J, Hatano T, Hattori N, Kim KS, Chang S, Seol W (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 314:2055–2065. doi:10.1016/j.yexcr.2008.02.015

    Article  CAS  PubMed  Google Scholar 

  68. Piccoli G, Condliffe SB, Bauer M, Giesert F, Boldt K, De Astis S, Meixner A, Sarioglu H, Vogt-Weisenhorn DM, Wurst W, Gloeckner CJ, Matteoli M, Sala C, Ueffing M (2011) LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci 31:2225–2237. doi:10.1523/JNEUROSCI.3730-10.2011

    Article  CAS  PubMed  Google Scholar 

  69. Xiong Y, Coombes CE, Kilaru A, Li X, Gitler AD, Bowers WJ, Dawson VL, Dawson TM, Moore DJ (2010) GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet 6:e1000902. doi:10.1371/journal.pgen.1000902

    Article  PubMed  PubMed Central  Google Scholar 

  70. Alegre-Abarrategui J, Christian H, Lufino MM, Mutihac R, Venda LL, Ansorge O, Wade-Martins R (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18:4022–4034. doi:10.1093/hmg/ddp346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Beilina A, Rudenko IN, Kaganovich A, Civiero L, Chau H, Kalia SK, Kalia LV, Lobbestael E, Chia R, Ndukwe K, Ding J, Nalls MA, International Parkinson’s Disease Genomics Consortium, North American Brain Expression Consortium, Olszewski M, Hauser DN, Kumaran R, Lozano AM, Baekelandt V, Greene LE, Taymans JM, Greggio E, Cookson MR (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci USA 111:2626–2631. doi:10.1073/pnas.1318306111

  72. MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77:425–439. doi:10.1016/j.neuron.2012.11.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hoang QQ (2014) Pathway for Parkinson disease. Proc Natl Acad Sci USA 111:2402–2403. doi:10.1073/pnas.1324284111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gómez-Suaga P, Rivero-Ríos P, Fdez E, Blanca Ramírez M, Ferrer I, Aiastui A, López De Munain A, Hilfiker S (2014) LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Hum Mol Genet 23:6779–6796. doi:10.1093/hmg/ddu395

    Article  PubMed  Google Scholar 

  75. Kalia SK, Lee S, Smith PD, Liu L, Crocker SJ, Thorarinsdottir TE, Glover JR, Fon EA, Park DS, Lozano AM (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945. doi:10.1016/j.neuron.2004.11.026

    Article  CAS  PubMed  Google Scholar 

  76. Liu ZH, Guo JF, Li K, Wang YQ, Kang JF, Wei Y, Sun QY, Xu Q, Wang DL, Xia K, Yan XX, Xu CS, Tang BS (2015) Analysis of several loci from genome-wide association studies in Parkinson’s disease in mainland China. Neurosci Lett 587:68–71. doi:10.1016/j.neulet.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  77. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11:909–913. doi:10.1038/ncb1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41:1303–1307. doi:10.1038/ng.485

    Article  CAS  PubMed  Google Scholar 

  79. Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Züchner S, Konidari I, Wang G, Singer C, Nahab F, Scott B, Stajich JM, Pericak-Vance M, Haines J, Vance JM, Martin ER (2010) Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet 74:97–109. doi:10.1111/j.1469-1809.2009.00560.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves CL, Kotzbauer PT, Trojanowski JQ, Lee VM (2003) Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 300:636–640. doi:10.1126/science.1082324

    Article  CAS  PubMed  Google Scholar 

  81. Tang TL, Erion JR, Tian Y, Liu W, Yin DM, Ye J, Tang B, Mei L, Xiong WC (2015) VPS35 in dopamine neurons is required for endosome-to-Golgi retrieval of Lamp2a, a receptor of chaperone-mediated autophagy that is critical for α-synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J Neurosci 35:10613–10628. doi:10.1523/JNEUROSCI.0042-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reddy JV, Seaman MN (2001) Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol Biol Cell 12:3242–3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ (2011) Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 43:338–345. doi:10.1016/j.nbd.2011.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T, Halliday GM (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson’s disease. Mov Disord 30:1639–1647. doi:10.1002/mds.26141

    Article  CAS  PubMed  Google Scholar 

  85. Rhinn H, Qiang L, Yamashita T, Rhee D, Zolin A, Vanti W, Abeliovich A (2012) Alternative α-synuclein transcript usage as a convergent mechanism in Parkinson’s disease pathology. Nat Commun 3:1084. doi:10.1038/ncomms2032

    Article  PubMed  PubMed Central  Google Scholar 

  86. McLean JR, Hallett PJ, Cooper O, Stanley M, Isacson O (2012) Transcript expression levels of full-length alpha-synuclein and its three alternatively spliced variants in Parkinson’s disease brain regions and in a transgenic mouse model of alpha-synuclein overexpression. Mol Cell Neurosci 49:230–239. doi:10.1016/j.mcn.2011.11.006

    Article  CAS  PubMed  Google Scholar 

  87. Gonçalves SA, Macedo D, Raquel H, Simões PD, Giorgini F, Ramalho JS, Barral DC, Ferreira Moita L, Outeiro TF (2016) shRNA-based screen identifies endocytic recycling pathway components that act as genetic modifiers of alpha-synuclein aggregation, secretion and toxicity. PLoS Genet 12:e1005995. doi:10.1371/journal.pgen.1005995

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gonçalves SA, Outeiro TF (2016) Traffic jams and the complex role of alpha-Synuclein aggregation in Parkinson’s disease. Small GTPases. doi:10.1080/21541248.2016.1199191 (Epub ahead of print)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitry A. Chistiakov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical standards

This review article does not contain any studied involving human participants or animals.

Informed consent

For this type of study, informed consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistiakov, D.A., Chistiakov, A.A. α-Synuclein-carrying extracellular vesicles in Parkinson’s disease: deadly transmitters. Acta Neurol Belg 117, 43–51 (2017). https://doi.org/10.1007/s13760-016-0679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-016-0679-1

Keywords

Navigation